

MASTER OF COMPUTER APPLICATIONS

MCA-13

JAVA PROGRAMMING

Directorate of Distance Education

Guru Jambheshwar University of

Science & Technology

Hisar - 125001

ii

CONTENTS

1. Introduction to JAVA 1-30

2. Data Types and Operators 31-56

3. Control Structures and Looping 57-74

4. Inheritance and Polymorphism 75-107

5. Multithreaded Programming 108-142

6. Exception Handling 143-168

7. File Handling 169-187

8. GUI Programming 188-206

1

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 1

INTRODUCTION TO JAVA

STRUCTURE

1.0 Learning Objective

1.1 Introduction

1.2 Object-Oriented Paradigm

1.3 Basic Concepts of Object-Oriented Programming

1.3.1 Objects and Classes

1.3.2 Data Abstraction and Encapsulation

1.3.3 Inheritance

1.3.4 Polymorphism

1.3.5 Dynamic Binding

1.3.6 Message Communication

1.4 Benefits of Object-Oriented Programming

1.5 Applications of Object-Oriented Programming

1.6 Java Evolution

 1.6.1 Java History

1.7 Features of Java

 1.7.1 Simple

 1.7.2 Object-Oriented

 1.7.3 Robust

 1.7.4 Secure

 1.7.5 Multithreaded

 1.7.6 Architecture-Neutral

 1.7.7 Portable

 1.7.8 Distributed

 1.7.9 Dynamic

2

 1.7.10 Interpreted and High Performance

1.8 Java Run Time Environment

 1.8.1 Hardware and Software Requirements

 1.8.2 Java Support Systems

 1.8.3 Java Environment

 1.8.3.1 Java Development Kit

 1.8.3.2 Application Programming Interface

1.9 Comparison of Java and C++

1.10 Basic Java Program

 1.10.1 Entering the Program

 1.10.2 Compiling the Program

 1.10.3 One Close look at sample program

1.11 Check Your Progress

1.12 Summary

1.13 Keywords

1.14 Self-Assessment Test

1.15 Answers to check your progress

1.16 References / Suggested Readings

1.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• Gain the concept of Java

• Differentiate Java as Object Oriented Language.

• Illustrate the basic features of Java.

• Know the Java environment.

• Know how to install Java SDK.

3

1.1 INTRODUCTION

The greatest challenges and most exciting opportunities for software developers today lie

in tackling the power of networks. Most of the applications created today, will almost

certainly be run on machines connected to the global networks i.e. Internet.

We know that by the mid 1990s, the World Wide Web had transformed the online world.

Through a system of hypertext, users of the Web were able to select and view information

from all over the world. However, while this system of hypertext gave users a high degree

of selectivity over the information they chose to view, their level of interactivity with that

information was low. Moreover, the Web lacked true interactivity—real-time, dynamic,

and visual interaction between the user and application.

Sun Microsystems, a company best known for its high-end Unix workstations, developed

a programming language named Java to create software that can run on many different

kinds of devices. Java language was designed to be small, simple, and portable across

platforms and operating systems, both at the source and at the binary level.

Java brings this missing interactivity to the Web. With a Java-enabled Web browser, you

can encounter animations and interactive applications. Java programmers can make

customized media formats and information protocols that can be displayed in any Java-

enabled browser. Java’s features enrich the communication, information, and interaction

on the Web by enabling users to distribute executable content—rather than just HTML

pages and multimedia files—to users. This ability to distribute executable content is the

power of Java.

In this unit, we will introduce you to the Java programming language. We will discuss the

basic features of Java and how to install the Java Development Kit. We will also discuss

how to write a Java program and the procedure for compiling and running a Java program.

1.2 Object-Oriented Paradigm

Java is a true object-oriented language. Many of Java’s object-oriented concepts are

inherited from C++, the language on which it is based, but it borrows many concepts from

other object-oriented languages as well. Like most object-oriented programming

languages, Java includes a set of class libraries that provide basic data types, system input

4

and output capabilities, and other utility functions. These basic classes are part of the Java

development kit, which also has classes to support networking, common Internet protocols,

and user interface toolkit functions.

Fig. 1.1 Object = Data + Methods

C was developed to meet general system programming needs. It was quickly adapted for

general use and found widespread acceptance. C is a high-level procedural language that

has many low-level features. These features help to make it versatile and efficient.

However, many of these features give it a reputation for being cryptic and hard to maintain.

C++ extends the C language to provide object-oriented features. The language is backward

compatible with C, and code from the two languages can be used with each other with little

difficulty. C++ has found quick acceptance and is supported by a number of pre-built

specialized classes.

Java can be considered the third generation of the C/C++ family. It is not backward

compatible with C/C++ but was designed to be very similar to these languages. The creators

of Java intentionally left out some of the features of C/C++ that have been problematic for

programmers. Java is strongly object-oriented. In fact, one cannot create Java code that is

not object-oriented. Java’s portability is a key advantage and is the reason why Java is often

used for Web development.

1.3 Basic Concepts of Object-Oriented Programming

Java, the programming language, was introduced by Sun Microsystems. This work was

initiated by James Gosling and the final version of Java was released in the year

1995.However, initially Java was released as a component of the core Sun Microsystem

platform for Java called J2SE or Java 1.0. The latest release of Java or J2SE is Java Standard

Version 6.

5

The rising popularity of Java, as a programming platform and language has led to the

development of several tools and configurations, which are made keeping Java in mind.

For instance, the J2ME and J2EE are two such configurations. The latest versions of Java

are called Java SE and Java EE or Java ME instead of J2SE, J2EE and J2ME. The biggest

advantage of using the Java platform is the fact that it allows you to run your code at any

machine. So, you just need to write your code once and expect it to run everywhere.

As far as the features of Java are concerned, they are as follows:

1.3.1 Objects and Classes

Object − Objects have states and behaviors. Example: A dog has states - color, name,

breed as well as behaviors – wagging the tail, barking, eating. An object is an instance of

a class.

Class − A class can be defined as a template/blueprint that describes the behavior/state

that the object of its type support.

Objects in Java

Let us now look deep into what are objects. If we consider the real-world, we can find many

objects around us, cars, dogs, humans, etc. All these objects have a state and a behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking,

wagging the tail, running.

If you compare the software object with a real-world object, they have very similar

characteristics.

Software objects also have a state and a behavior. A software object's state is stored in

fields and behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the

object-to-object communication is done via methods.

Classes in Java

A class is a blueprint from which individual objects are created.

Following is a sample of a class.

Example

public class Dog {

 String breed;

 int age;

 String color;

6

 void barking() {

 }

 void hungry() {

 }

 void sleeping() {

 }

}

Figure 1.2 Representation of an Object

1.3.2 Data Abstraction and Encapsulation

An essential element of object-oriented programming is abstraction. Humans manage

complexity through abstraction. For example, people do not think of a car as a set of tens

of thousands of individual parts. They think of it as a well-defined object with its own

unique behavior. This abstraction allows people to use a car to drive to the grocery store

without being overwhelmed by the complexity of the parts that form the car. They can

ignore the details of how the engine, transmission, and braking systems work. Instead,

they are free to utilize the object as a whole.

Encapsulation is the mechanism that binds together code and the data it manipulates, and

keeps both safe from outside interference and misuse. One way to think about encapsulation

is as a protective wrapper that prevents the code and data from being arbitrarily accessed

by other code defined outside the wrapper. Access to the code and data inside the wrapper

is tightly controlled through a well-defined interface. To relate this to the real world,

7

consider the automatic transmission on an automobile. It encapsulates hundreds of bits of

information about your engine, such as how much you are accelerating, the pitch of the

surface you are on, and the position of the shift lever.

Fig. 1.3. Encapsulation -Objects as “black boxes”

1.3.3 Inheritance

Reusability is one of the important feature of object-oriented programming and it can be

achieved through inheritance. Java supports the concepts of inheritance. With the use of

inheritance, the information is made manageable in a hierarchical order. Inheritance

can be defined as the process where one object acquires the properties of another. When

we want to create a new class and there is already a class that includes some of the code

that we want, we can derive the new class from the existing class. In doing this, we can

reuse the fields and methods of the existing class without rewriting them again.

A class that is derived from another class is called a subclass (also a derived class, extended

class, or child class). A subclass inherits all the members (fields, methods, and nested

classes) from its superclass. The class from which the subclass is derived is called a

superclass (also a base class or a parent class). Constructors cannot be inherited by

subclasses, but the constructor of the superclass can be invoked from the subclass. In Java,

inheritance is implemented by the process of extension. To define a new class as an

extension of an existing class, we simply use an extend clause in the header mof the new

classes definition. The concept of inheritance is used to make the things from general to

more specific.

8

Fig. 1.4. Property Inheritance

1.3.4 Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface

to be used for a general class of actions. The specific action is determined by the exact

nature of the situation. Consider a stack (which is a last-in, first-out list). You might have

a program that requires three types of stacks. One stack is used for integer values, one for

floatingpoint values, and one for characters. The algorithm that implements each stack is

the same,even though the data being stored differs. In a non–object-oriented language, you

would be required to create three different sets of stack routines, with each set using

different names.However, because of polymorphism, in Java you can specify a general set

of stack routines that all share the same names.

9

Fig. 1.5. Polymorphism

1.3.4 Dynamic Binding

In dynamic binding, the method call is bonded to the method body at runtime. This is also

known as late binding. This is done using instance methods.

Example

class Super {

 public void sample() {

 System.out.println("This is the method of super class");

 }

}

Public class extends Super {

 Public static void sample() {

 System.out.println("This is the method of sub class");

 }

 Public static void main(String args[]) {

 new Sub().sample()

 }

}

Output

This is the method of sub class

1.3.5 Message Communication

Message Passing in terms of computers is communication between processes. It is a form

of communication used in object-oriented programming as well as parallel programming.

Message passing in Java is like sending an object i.e. message from one thread to another

thread. It is used when threads do not have shared memory and are unable to share monitors

or semaphores or any other shared variables to communicate. Suppose we consider an

example of producer and consumer, likewise what producer will produce, the consumer

will be able to consume that only. We mostly use Queue to implement communication

between threads.

10

Fig. 1.6 Message Passing

A message for an object is a request for execution of a procedure, and therefore will

invoke a method (procedure) in the receiving object that generates the desired result, as

shown is Fig. 1.7.

Fig. 1.7. Message triggers a method

Message passing involves specifying the name of the object, the name of th method

(message) and the information to be sent. For example, consider the statement

 Employee. salary (name);

Here, Employee is the object, salary is the message and name is the parameter that

contains information.

Objects have a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

11

1.4 Benefits of Object-Oriented Programming

Following are the benefits of object-oriented programming:

1. Simplicity: software objects model real world objects, so the complexity is reduced

and the program structure is very clear;

2. Modularity: each object forms a separate entity whose internal workings are

decoupled from other parts of the system;

3. Modifiability: it is easy to make minor changes in the data representation or the

procedures in an OO program. Changes inside a class do not affect any other part of a

program, since the only public interface that the external world has to a class is through

the use of methods;

4. Extensibility: adding new features or responding to changing operating environments

can be solved by introducing a few new objects and modifying some existing ones;

5. Maintainability: objects can be maintained separately, making locating and fixing

problems easier;

6. Re-usability: objects can be reused in different programs

1.5 Applications of Object-Oriented Programming

Main application areas of OOP are:

• User interface design such as windows, menu.

• Real Time Systems

• Simulation and Modeling

• Object oriented databases

• AI and Expert System

• Neural Networks and parallel programming

• Decision support and office automation systems etc.

12

1.6 Java Evolution

The initial release of Java was nothing short of revolutionary, but it did not mark the end

of Java’s era of rapid innovation. Unlike most other software systems that usually settle

into a pattern of small, incremental improvements, Java continued to evolve at an explosive

pace. Soon after the release of Java 1.0, the designers of Java had already created Java 1.1.

The features added by Java 1.1 were more significant and substantial than the increase in

the minor revision number would have you think. Java 1.1 added many new library

elements, redefined the way events are handled, and reconfigured many features of the 1.0

library. It also deprecated (rendered obsolete) several features originally defined by Java

1.0. Thus, Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”

The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern

age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the

first release of Java 2 used the 1.2 version number. The reason is that it originally referred

to the internal version number of the Java libraries, but then was generalized to refer to

the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform

Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections

Framework, and it enhanced the Java Virtual Machine and various programming tools. Java

2 also contained a few deprecations. The most important affected the Thread class in which

the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,it

added to existing functionality and “tightened up” the development environment. In

general, programs written for version 1.2 and those written for version 1.3 are source-code

compatible. Although version 1.3 contained a smaller set of changes than the preceding

three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important

upgrades, enhancements, and additions. For example, it added the new keyword assert,

13

chained exceptions, and a channel-based I/O subsystem. It also made changes to the

Collections Framework and the networking classes. In addition, numerous small changes

were made throughout. Despite the significant number of new features, version 1.4

maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous

Java upgrades, which offered important, but measured improvements, J2SE 5

fundamentally expanded the scope, power, and range of the language.

1.6.1 JAVA HISTORY

James Gosling started working on the Java programming language in June 1991 for

utilization in one of his numerous set-top box ventures. The programming language, at first,

was called Oak. This name was kept after an oak tree that remained outside Gosling’s

office. This name was changed to the name Green and later renamed as Java, from a list of

words, randomly picked from the dictionary. Sun discharged the first open usage as Java

1.0 in 1995. It guaranteed Write Once, Run Anywhere (WORA), giving no-expense run-

times on prominent stages. On 13 November 2006, Sun discharged much of Java as free

and open source under the terms of the GNU General Public License (GPL). On 8 May

2007, Sun completed the procedure, making the greater part of Java’s center code free and

open-source, beside a little parcel of code to which Sun did not hold the copyright.

14

Table 1.1 Java Milestones

1.7 Features of Java

The Java team has summed up the basic features of Java with the following list of

buzzwords:

1.7.1 Simple

Java was designed to be easy for the professional programmer to learn and use effectively.

Assuming that you have some programming experience, you will not find Java hard to

master. If you already understand the basic concepts of object-oriented programming,

learning Java will be even easier. Best of all, if you are an experienced C++ programmer,

moving to Java will require very little effort. Because Java inherits the C/C++ syntax and

many of the object-oriented features of C++, most programmers have little trouble learning

Java.

15

1.7.2 Object-oriented

Java is a true object-oriented language. Many of Java’s object-oriented concepts are

inherited from C++, the language on which it is based,but it borrows many concepts from

other object-oriented languages as well. Like most object-oriented programming

languages, Java includes a set of class libraries that provide basic data types, system input

and output capabilities, and other utility functions. These basic classes are part of the Java

development kit, which also has classes to support networking, common Internet protocols,

and user interface toolkit functions.

1.7.3 Robust

Java is a robust language. The multiplatform environment of the Web places extraordinary

demands on a program, because the program must execute reliably in a variety of systems.

Thus, the ability to create robust programs was given a high priority in the design of Java.

To gain reliability, Java restricts you in a few key areas, to force you to find your mistakes

early in program development. At the same time, Java frees you from having to worry about

many of the most common causes of programming errors. Because Java is a strictly typed

language, it checks your code at compile time. However, it also checks your code at run

time.

1.7.4 Secure

Prior to Java, most users did not download executable programs frequently from Internet,

and those who did scanned them for viruses prior to execution. Even so, most users still

worried about the possibility of infecting their systems with a virus. In addition to viruses,

another type of malicious program exists that must be guarded against. This type of

program can gather private information, such as credit card numbers, bank account

balances, and passwords, by searching the contents of your computer’s local file system.

Java answers both of these concerns by providing a “firewall” between a networked

application and your computer. When you use a Java-compatible Web browser, you can

safely download Java applets without fear of viral infection or malicious intent. Java

achieves this protection by confining a Java program to the Java execution environment

and not allowing it access to other parts of the computer.

16

1.7.5 Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows

you to write programs that do many things simultaneously. The Java run-time system

comes with an elegant yet sophisticated solution for multiprocess synchronization that

enables you to construct smoothly running interactive systems.

1.7.6 Architecture-neutral

A central issue for the Java designers was that of code longevity and portability. One of the

main problems facing programmers is that no guarantee exists that if you write a program

today, it will run tomorrow—even on the same machine. Operating system upgrades,

processor upgrades, and changes in core system resources can all combine to make a

program malfunction. The Java designers made several hard decisions in the Java language

and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write

once; run anywhere, anytime, forever.” To a great extent, this goal was accomplished.

1.7.7 Portable

In addition to being architecture-neutral, Java code is also portable. It was an important

design goal of Java that it be portable so that as new architectures (due to hardware,

operating system, or both) are Java and the runtime environment is written in POSIX-

compliant C.

1.7.8 Distributed

Java is designed for the distributed environment of the Internet, because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing

a file. The original version of Java (Oak) included features for intra-address space

messaging. This allowed objects on two different computers to execute procedures

remotely. Java has recently revived these interfaces in a package called Remote Method

Invocation (RMI). This feature brings an unparalleled level of abstraction to client/server

programming.

17

1.7.9. Dynamic

Java programs carry with them substantial amounts of run-time type information that is

used to verify and resolve accesses to objects at run time. This makes it possible to

dynamically link code in a safe and expedient manner. This is crucial to the robustness of

the applet environment, in which small fragments of bytecode may be dynamically

updated on a running system.

1.7.10 Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling

into an intermediate representation called Java bytecode. This code can be executed on any

system that implements the Java Virtual Machine. Most previous attempts at cross-platform

solutions have done so at the expense of performance. As explained earlier, the Java

bytecode was carefully designed so that it would be easy to translate directly into native

machine code for very high performance by using a just-in-time compiler. Java run-time

systems that provide this feature lose none of the benefits of the platform-independent code.

1.8 Java Running Environment

Java is strongly associated with the internet because of the first application program

written in Java was hot Java. Web browsers to run applets on internet. Internet users can

use Java to create applet programs & run then locally using a Java-enabled browser such

as hot Java. Java applets have made the internet a true extension of the storage system of

the local computer.

1.8.1 Hardware and Software Requirements

Hardware Requirement for Java

Minimum hardware requirement to download Java on your Windows operating system as

follows:

• Minimum Windows 95 software

• IBM-compatible 486 system

18

• Hard Drive and Minimum of 8 MB memory

• A CD-ROM drive

• Mouse, keyboard and sound card, if required.

Software requirement for Java

Nowadays, Java is supported by almost every operating systems. whether it is a Windows,

Macintosh and Unix all supports the Java application development. So you can download

any of the operating system on your personal computer. Here are the minimum requirement.

• Operating System

• Java SDK or JRE 1.6 or higher

• Java Servlet Container (Free Servlet Container available)

• Supported Database and library that supports the database connection with Java.

1.8.2 Java Support Systems

It is clear from the discussion we had up to now that the operation of Java and Java-enabled

browsers on the Internet requires a variety of support systems. Table 1.1 lists the systems

necessary to support Java for delivering information on the internet.

Table 1.2 Java Support Systems

1.8.3 Java Environment

Java environment includes a large number of development tools and hundreds of classes and

methods. The development tools are part of the system known as Java development Kit

(JDK) and the classes and methods are part of the Java Standard Library (JSL), also known

as the Application Programming Interface (API).

19

1.8.3.1 Java development Kit

The Java development Kit comes with a collection of tools that are used for development

and running Java programs. Some of they are:

Java The loader for Java applications. This tool is an interpreter and can interpret the class

files generated by the javac compiler.

Javac The compiler, which converts source code into Java bytecode

Jar The archiver, which packages related class libraries into a single JAR file.

Javadoc The documentation generator, which automatically generates documentation from

source code comments

Jdb The Java debugger

Jps The process status tool, which displays process information for current Java processes

Javap The class file disassembler

Appletviewer This tool can be used to run and debug Java applets without a web browser.

Javah The C header and stub generator, used to write native methods

An application programming interface (API) is an interface implemented by a software

program to enable interaction with other software, similar to the way a user interface

facilitates interaction between humans and computers. Java APIs include hundreds of

classes and methods grouped into several functional packages. Most commonly used

packages are:

• Language support package

• Utility package

• Input/Output Package

• Networking Package

• AWT(Abstract Window Tool Kit) Package

• Applet Package

1.8.3.2 Application Programming Interface

An application programming interface (API) is a computing interface which defines

interactions between multiple software intermediaries. It defines the kinds of calls or

requests that can be made, how to make them, the data formats that should be used, the

conventions to follow, etc. It can also provide extension mechanisms so that users can extend

existing functionality in various ways and to varying degrees.[1] An API can be entirely

20

custom, specific to a component, or it can be designed based on an industry-standard to

ensure interoperability. Through information hiding, APIs enable modular programming,

which allows users to use the interface independently of the implementation.

1.9 Comparison of Java and C++

C was developed to meet general system programming needs. It was quickly adapted for

general use and found widespread acceptance. C is a high-level procedural language that

has many low-level features. These features help to make it versatile and efficient. However,

many of these features give it a reputation for being cryptic and hard to maintain. C++

extends the C language to provide object-oriented features. The language is backward

compatible with C, and code from the two languages can be used with each other with little

difficulty. C++ has found quick acceptance and is supported by a number of pre-built

specialized classes.

Java can be considered the third generation of the C/C++ family. It is not backward

compatible with C/C++ but was designed to be very similar to these languages. The creators

of Java intentionally left out some of the features of C/C++ that have been problematic for

programmers. Java is strongly object-oriented. In fact, one cannot create Java code that is

not object-oriented. Java’s portability is a key advantage and is the reason why Java is often

used for Web development.

C++ vs Java : A list of top differences between C++ and Java are given below:

Comparison Index C++ Java

Platform-

independent

C++ is platform-dependent. Java is platform-

independent.

Mainly used for C++ is mainly used for system

programming.

Java is mainly used for

application programming.

It is widely used in

window, web-based,

enterprise and mobile

applications.

Design Goal C++ was designed for systems

and applications programming. It

Java was designed and

created as an interpreter

for printing systems but

21

was an extension of C

programming language.

later extended as a

support network

computing. It was

designed with a goal of

being easy to use and

accessible to a broader

audience.

Goto C++ supports

the goto statement.

Java doesn't support the

goto statement.

Multiple

inheritance

C++ supports multiple

inheritance.

Java doesn't support

multiple inheritance

through class. It can be

achieved by interfaces in

java.

Operator

Overloading

C++ supports operator

overloading.

Java doesn't support

operator overloading.

Pointers C++ supports pointers. You can

write pointer program in C++.

Java supports pointer

internally. However, you

can't write the pointer

program in java. It means

java has restricted pointer

support in java.

Compiler and

Interpreter

C++ uses compiler only. C++ is

compiled and run using the

compiler which converts source

code into machine code so, C++

is platform dependent.

Java uses compiler and

interpreter both. Java

source code is converted

into bytecode at

compilation time. The

interpreter executes this

bytecode at runtime and

produces output. Java is

interpreted that is why it is

platform independent.

Call by Value and

Call by reference

C++ supports both call by value

and call by reference.

Java supports call by value

only. There is no call by

reference in java.

Structure and

Union

C++ supports structures and

unions.

Java doesn't support

structures and unions.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial

22

Thread Support C++ doesn't have built-in support

for threads. It relies on third-

party libraries for thread support.

Java has built-

in thread support.

Documentation

comment

C++ doesn't support

documentation comment.

Java supports

documentation comment

(/** ... */) to create

documentation for java

source code.

Virtual Keyword C++ supports virtual keyword so

that we can decide whether or not

override a function.

Java has no virtual

keyword. We can override

all non-static methods by

default. In other words,

non-static methods are

virtual by default.

unsigned right

shift >>>

C++ doesn't support >>>

operator.

Java supports unsigned

right shift >>> operator

that fills zero at the top for

the negative numbers. For

positive numbers, it works

same like >> operator.

Inheritance Tree C++ creates a new inheritance

tree always.

Java uses a single

inheritance tree always

because all classes are the

child of Object class in

java. The object class is

the root of

the inheritance tree in

java.

Hardware C++ is nearer to hardware. Java is not so interactive

with hardware.

Object-oriented C++ is an object-oriented

language. However, in C

language, single root hierarchy is

not possible.

Java is also an object-

oriented language.

However, everything

(except fundamental

types) is an object in Java.

It is a single root hierarchy

as everything gets derived

from java.lang.Object.

23

1.10 Basic Java Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s look at

some actual Java programs. Let’s start by compiling and running the short sample program

shown here. As you will see, this involves a little more work than you might imagine.

/*

This is a simple Java program.

Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}

}

1.10.1 Entering the Program

For most computer languages, the name of the file that holds the source code to a program

is immaterial. However, this is not the case with Java. The first thing that you must learn

about Java is that the name you give to a source file is very important. For this example, the

name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains

(among other things) one or more class definitions. (For now, we will be using source files

that contain only one class.) The Java compiler requires that a source file use the .java

filename extension.

As you can see by looking at the program, the name of the class defined by the program is

also Example. This is not a coincidence. In Java, all code must reside inside a class. By

convention, the name of the main class should match the name of the file that holds the

program. You should also make sure that the capitalization of the filename matches the class

name. The reason for this is that Java is case-sensitive. At this point, the convention that

filenames correspond to class names may seem arbitrary. However, this convention makes

it easier to maintain and organize your programs.

24

1.10.2 Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the

source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version

of the program. As discussed earlier, the Java bytecode is the intermediate representation of

your program that contains instructions the Java Virtual Machine will execute. Thus, the

output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher called java. To

do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file

named after the class and using the .class extension. This is why it is a good idea to give

your Java source files the same name as the class they contain—the name of the source file

will match the name of the .class file. When you execute java as just shown, you are actually

specifying the name of the class that you want to execute. It will automatically search for a

file by that name that has the .class extension. If it finds the file, it will execute the code

contained in the specified class.

1.10.3 A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to

all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*

This is a simple Java program.

Call this file "Example.java".

25

*/

This is a comment. Like most other programming languages, Java lets you enter a remark

into a program’s source file. The contents of a comment are ignored by the compiler. Instead,

a comment describes or explains the operation of the program to anyone who is reading its

source code. In this case, the comment describes the program and reminds you

that the source file should be called Example.java. Of course, in real applications,

comments generally explain how some part of the program works or what a specific feature

does.

Java supports three styles of comments. The one shown at the top of the program is called a

multiline comment. This type of comment must begin with /* and end with */. Anything

between these two comment symbols is ignored by the compiler. As the name suggests, a

multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an

identifier that is the name of the class. The entire class definition, including all of its

members, will be between the opening curly brace ({) and the closing curly brace (}). For

the moment, don’t worry too much about the details of a class except to note that in Java,

all program activity occurs within one. This is one reason why all Java programs are (at least

a little bit) object-oriented. The next line in the program is the single-line comment, shown

here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with

a // and ends at the end of the line. As a general rule, programmers use multiline comments

for longer remarks and single-line comments for brief, line-by-line descriptions. The next

line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line

at which the program will begin executing. All Java applications begin execution by calling

main(). The full meaning of each part of this line cannot be given now, since it involves a

26

detailed understanding of Java’s approach to encapsulation. However, since most of the

examples in the first part of this book will use this line of code, let’s take a brief look at each

part now.

The public keyword is an access modifier, which allows the programmer to control the

visibility of class members. When a class member is preceded by public, then that member

may be accessed by code outside the class in which it is declared. (The opposite of public

is private, which prevents a member from being used by code defined outside of its class.)

In this case, main() must be declared as public, since it must be called by code outside of

its class when the program is started. The keyword static allows main() to be called without

having to instantiate a particular instance of the class. This is necessary since main() is

called by the Java Virtual Machine before any objects are made. The keyword void simply

tells the compiler that main() does not return a value. As you will see, methods may also

return values. If all this seems a bit confusing, don’t worry. All of these concepts will be

discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mindthat

Java is case-sensitive. Thus, Main is different from main. It is important to understandthat

the Java compiler will compile classes that do not contain a main() method. But java has

no way to run these classes. So, if you had typed Main instead of main, the compiler would

still compile your program. However, java would report an error because it would be unable

to find the main() method.

Any information that you need to pass to a method is received by variables specified within

the set of parentheses that follow the name of the method. These variables are called

parameters. If there are no parameters required for a given method, you still need to include

the empty parentheses. In main(), there is only one parameter, albeit a complicated one.

String args[] declares a parameter named args, which is an array of instances of the class

String. (Arrays are collections of similar objects.) Objects of type String store character

strings. In this case, args receives any command-line arguments present when the program

is executed. This program does not make use of this information, but other programs shown

later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the

code that comprises a method will occur between the method’s opening curly brace and its

closing curly brace.

27

One other point: main() is simply a starting place for your program. A complex program

will have dozens of classes, only one of which will need to have a main() method to get

things started. Furthermore, in some cases, you won’t need main() at all. For example,

when creating applets—Java programs that are embedded in web browsers—you won’t use

main() since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string "This is a simple Java program." followed by a new line on the

screen. Output is actually accomplished by the built-in println() method. In this case,

println() displays the string which is passed to it. As you will see, println() can be used

to display other types of information, too. The line begins with System.out. While too

complicated to explain in detail at this time, briefly, System is a predefined class that

provides access to the system, and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most

real-world Java applications. Since most modern computing environments are windowed

and graphical in nature, console I/O is used mostly for simple utility programs,

demonstration programs, and server-side code. Later in this book, you will learn other ways

to generate output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end with

a semicolon. The reason that the other lines in the program do not end in a semicolon is that

they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

1.11 Check Your Progress

1. Object is the combination of Data and _____________

2. A class is a _______________ that describes the behavior/state that the object of its

type support.

3. __________________is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference and misuse.

4. ___________________can be defined as the process where one object acquires the

properties of another.

28

5. ___________________ is a feature that allows one interface to be used for a general

class of actions.

6. In _______________________, the method call is bonded to the method body at

runtime.

7. Objects can be reused in different programs; this feature is called

8. Java communicates with a Web page through a special tag called

9. Java Standard Library (JSL), also known as the ________________________

10. A Language used for creating hyperlinks is called _____________________

1.12 Summary

Java is a true object-oriented language. Many of Java’s object-oriented concepts are

inherited from C++, the language on which it is based, but it borrows many concepts from

other object-oriented languages as well. Like most object-oriented programming

languages, Java includes a set of class libraries that provide basic data types, system input

and output capabilities, and other utility functions. These basic classes are part of the Java

development kit, which also has classes to support networking, common Internet protocols,

and user interface toolkit functions.

The benefits of object-oriented programming: Simplicity, Modularity, Modifiability,

Extensibility, Maintainability, Re-usability.

Features of Java are: Simple, Object-Oriented, Robust, Secure, Multithreaded,

Architecture-Neutral, Portable, Distributed, Dynamic.

Minimum hardware requirement to download Java on your Windows operating system as

follows:

• Minimum Windows 95 software

• IBM-compatible 486 system

• Hard Drive and Minimum of 8 MB memory

• A CD-ROM drive

29

• Mouse, keyboard and sound card, if required.

The minimum software requirement is:

• Operating System

• Java SDK or JRE 1.6 or higher

• Java Servlet Container (Free Servlet Container available)

• Supported Database and library that supports the database connection with Java.

1.13 Keywords

1 Object- An object is an instance of a class. Object have states and behaviors.

2 Class- A class can be defined as a template/blueprint that describes the behavior/state

that the object of its type support.

3 Encapsulation- It is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference and misuse.

4 Inheritance- Inheritance can be defined as the process where one object acquires the

properties of another. When we want to create a new class and there is already a class

that includes some of the code that we want, we can derive the new class from the

existing class.

5 Polymorphism- Polymorphism is a feature that allows one interface to be used for a

general class of actions. The specific action is determined by the exact nature of the

situation.

6 Object-Oriented- Java is a true object-oriented language. Many of Java’s object-

oriented concepts are inherited from C++, the language on which it is based,but it

borrows many concepts from other object-oriented languages as well.

7 Robust- Java is a robust language. The multiplatform environment of the Web places

extraordinary demands on a program, because the program must execute reliably in

a variety of systems. Thus, the ability to create robust programs was given a high

priority in the design of Java.

8 JDK- JDK stands for Java Development Kit.

30

1.14 Self-Assessment Test

Q.1 Describe any three basic features of Java programming language.

Q.2. What are the benefits of OOP?

Q.3. Describe the various applications of OOP.

Q.4. Briefly describe History of Java.

Q.5. Explain Data abstraction and Polymorphism concept.

Q.6. Explain the similarities between C and C++.

Q.7. Write down differences between C and C++

1.15 Answers to check your progress

1. Methods

2. Template/Blueprint

3. Encapsulation

4. Inheritance

5. Polymorphism

6. Dynamic Binding

7. Re-usability

8. <APPLET>

9. Application Programming Interface (API).

10. HTML (Hypertext Markup Language)

1.16 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

31

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 2

Data Types and Operators

STRUCTURE

2.0 Learning Objective

2.1 Introduction

2.2 Data Types

2.3 Java Tokens

 2.3.1 Keywords

 2.3.2 Identifiers

 2.3.3 Literals

 2.3.3.1 Integer Literals

 2.3.3.2 Floating-Point Literals

 2.3.3.3 Boolean Literals

 2.3.3.4 Character Literals

 2.3.4 Operators

 2.3.5 Separators

2.4 Operators

 2.4.1 Arithmetic Operators

2.4.2 Relational Operators

 2.4.3 Logical Operators

2.4.4 Assignment Operators

2.4.5 Increment and Decrement Operators

2.4.6 Bitwise Operators

2.4.7 Special Ternary Operator

2.5 Precedence in Arithmetic Operators

2.6 Type Casting

 2.6.1 Java’s Automatic Conversions

32

 2.6.2 Casting Incompatible Types

2.7 Check Your Progress

2.8 Summary

2.9 Keywords

2.10 Self-Assessment Test

2.11 Answers to check your progress

2.12 References / Suggested Readings

2.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• Learn about Java tokens

• Learn about the variables, constants and data types in Java

• Declare and define variables in Java

• Learn about the various operators used in Java programming

2.1 INTRODUCTION

The previous unit is an introductory unit where you have acquainted with the object-

oriented features of the programming language Java. The installation procedure of Java

SDK is also described in the unit. You have learnt how to write, save, compile and execute

programs in Java from the previous unit.

In this unit we will discuss the basics of Java programming language which include tokens,

variables, data types, constants etc. This might be a review for learners who have learnt the

languages like C/C++ earlier. We extend this discussion by adding some new concepts

associated with Java.

2.2 Data Types

Every variable must have a data type. A data type determines the values that the variable

can contain and the operations that can be performed on it. A variable’s type also

33

determined how its value is stored in the computer’s memory. The JAVA programming

language has the following categories of data types (Fig 2.1):

Fig. 2.1 Data types in Java

A variable of primitive type contains a single value of the appropriate size and format for

its type: a number, a character, or a boolean value. Primitive types are also termed as

intrinsic or built-in types. The primitive types are described below:

• Integer type

Integer type can hold whole numbers like 1,2, 3, ….-4, 1996 etc. Java supports four types

of integer types: byte, short, int and long. It does not support unsigned types and therefore

all Java values are signed types. This means that they can be positive or negative.

For example, the int value 1996 is actually stored as the bit pattern

00000000000000000000011111001100 as the binary equivalent of 1996 is 11111001100.

Similarly, we must use a byte type variable for storing a number like 20 instead of an int

type. It is because that smaller data types require less time for manipulation. We can specify

a long integer by putting an ‘L’ or ‘l’ after the number. ‘L’ is preferred, as it cannot be

confused with the digit ‘1’.

34

Fig.2.2. Integer Data Types

• Floating Point type

Floating point type can hold numbers containing factorial parts such as 2.5, 5.75, -2.358.

i.e., a series of digits with a decimal point is of type floating point. There are two kinds of

floating point storage in Java. They are: float (Single-precision floating point) and double

(Doubleprecision floating point). In general, floating point numbers are treated as double-

precision quantities. To force them to be in single-precision mode, we must append ‘f’ or

‘F’ to the numbers. For example, 5.23F, 2.25f

Fig. 2.3 Floating point data types

• Character type

Java provides a character data type to store character constants in memory. It is denoted by

the keyword char. The size of char type is 2 bytes.

35

• Boolean type

Boolean type can take only two values: true or false. It is used when we want to test a

particular condition during the execution of the program. It is denoted by the keyword

boolean and it uses 1 byte of storage.

The memory size and range of all eight primitive data types are given

 in the following table 2.1:

Table 2.1 Size and Range of primitive type

In addition to eight primitive types, there are also three kinds of non-primitive types in

JAVA. They are also termed as reference or derived types. The non-primitive types are:

arrays, classes and interfaces. The value of a non-primitive type variable, in contrast to

that of a primitive type, is a reference to (an address of) the value or set of values

represented by the variable. These are discussed later as and when they are encountered.

2.3 Java Tokens

The smallest individual units in a program are known as tokens. A Java program is basically

a collection of classes. There are five types of tokens in Java language. They are: Keywords,

Identifiers, Literals, Operators and Separators.

2.3.1 Keywords

Keywords are some reserved words which have some definite meaning. Java language has

reserved 60 words as keywords. They cannot be used as variable name and they are written

in lower-case letter. Since Java is case-sensitive, one can use thse word as identifiers by

36

changing one or more letters to upper-case. But generally, it should be avoided. Java does

not use many keywords of C/C++ language but it has some new keywords which are not

present in C/C++. A list of Java keywords are given in the following table:

Table 2.2. Java Keywords

2.3.2 Identifiers

Java Identifiers are used for naming classes, methods, variables, objects, labels in a

program. These are actually tokens designed by programmers. There are a few rules for

naming the identifiers. These are: Identifier name may consist of alphabets, digits, dolar

($) character, underscore (_).

• Identifier name must not begin with a digit

• Upper case and lowercase letters are distinct.

• Blank space is not allowed in a identifier name.

• They can be of any length.

While writing Java programs, the following naming conventions should be followed by

programmers:

• All local and private variables use only lower-case letters. Underscore is combined

if required. For example, total_marks, average

• When more than one word are used in a name, the second and subsequent words

are marked with a leading upper-case letter. For example, dateOfBirth, totalMarks,

studentName.

37

• Names of all public methods and interface variables start with a leading lower-case

letter. For example, total, average.

• All classes and interfaces start with a leading upper-case letter. For example,

HelloJava, Employee, ComplexNumber

• Variables that represent constant values use all upper-case letters and underscore

between word if required. For example, PI, RATE, MAX_VALUE.

2.3.3 Literals

Literals in Java are a sequence of characters such as digits, letters and other characters that

represent constant values to be stored in a variable. A constant value in Java is created by

using a literal representation of it. For example, here are some literals:

100 98.6 X This is a test

Left to right, the first literal specifies an integer, the next is a floating-point value, the third

is a character constant, and the last is a string. A literal can be used anywhere a value of its

type is allowed.

2.3.3.1 Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole

number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,

meaning they are describing a base 10 number. Two other bases that can be used in integer

literals are octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java

by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the

seemingly valid value 09 will produce an error from the compiler, since 9 is outside of

octal’s 0 to 7 range. A more common base for numbers used by programmers is

hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64

bits. You signify a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a

hexadecimal digit is 0 to 15, so A through F (or a through f) are substituted for 10 through

15.

38

2.3.3.2 Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be

expressed in either standard or scientific notation. Standard notation consists of a whole

number component followed by a decimal point followed by a fractional component. For

example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point

numbers. Scientific notation uses a standard-notation, floating-point number plus a suffix

that specifies a power of 10 by which the number is to be multiplied. The exponent is

indicated by an E or e followed by a decimal number, which can be positive or negative.

Examples include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you

must append an F or f to the constant. You can also explicitly specify a double literal by

appending a D or d. Doing so is, of course, redundant. The default double type consumes

64 bits of storage, while the smaller float type requires only 32 bits.

2.3.3.4 Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can

have, true and false. The values of true and false do not convert into any numerical

representation. The true literal in Java does not equal 1, nor does the false literal equal 0.

In Java, the Boolean literals can only be assigned to variables declared as boolean or used

in expressions with Boolean operators.

2.3.3.5 Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that

can be converted into integers and manipulated with the integer operators, such as the

addition and subtraction operators. A literal character is represented inside a pair of single

quotes. All of the visible ASCII characters can be directly entered inside the quotes, such

as 'a', 'z', and '@'. For characters that are impossible to enter directly, there are several

escape sequences that allow you to enter the character you need, such as ' \' ' for the single-

quote character itself and ' \n' for the newline character. There is also a mechanism for

directly entering the value of a character in octal or hexadecimal. For octal notation, use

the backslash followed by the three-digit number. For example, ' \141' is the letter 'a'. For

39

hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For

example, ' \u0061' is the ISO-Latin-1 'a' because the top byte is zero. ' \ua432 ' is a Japanese

Katakana character.

2.3.4 Operators

An operator is a symbol that takes one or more arguments and operates on them to produce

a result. Operators are special symbols that are commonly used in expressions. An operator

performs a function on one, two, or three operands. An operator that requires one operand

is called a unary operator. For example, ++ is a unary operator that increments the value of

its operand by 1. An operator that requires two operands is a binary operator. For example,

= is a binary operator that assigns the value from its righthand operand to its left-hand

operand. And finally, a ternary operator is one that requires three operands. The Java

programming language has one ternary operator (?:).Many Java operators are similar to

those in other programming languages. Java supports most C++ operators. In addition, it

supports a few that are unique to it. Operators in Java include arithmetic, assignment,

increment and decrement, Relational and logical operations. We will read all these

operators in detail later.

2.3.5 Separators

Separators are symbols used to indicate where groups of code are arranged and divided.

Java separators are as follows:

{ } Braces

() Parentheses

[] Brackets

; Semicolon

, Comma

. Period

2.4 Operators

An operator is a symbol that takes one or more arguments and operates on them to produce

a result. Operators are special symbols that are commonly used in expressions. An operator

40

performs a function on one, two, or three operands. An operator that requires one operand

is called a unary operator. For example, ++ is a unary operator that increments the value

of its operand by 1. An operator that requires two operands is a binary operator. For

example, = is a binary operator that assigns the value from its righthand operand to its left-

hand operand. And finally, a ternary operator is one that requires three operands. The Java

programming language has one ternary operator (?:).Many Java operators are similar to

those in other programming languages. Java supports most C++ operators. In addition, it

supports a few that are unique to it. Operators in Java include arithmetic, assignment,

increment and decrement, Relational and logical operations.

2.4.1 Arithmetic Operators

Java has five operators for basic arithmetic (Table 2.3)

Table 2.3 Arithmetic Operators

In the table, each operator takes two operands, one on either side of the operator. Integer

division results in an integer. Because integers don not have decimal fractions, any

remainder is ignored. The expression 14 / 4, for example, results in 3. The remainder 2 is

ignored in this case. Modulus (%) gives the remainder once the operands have been evenly

divided. For example, 14 % 4 results in 2 because 4 goes into 14 three times, with 2 left

over. A sample program for arithmetic operation is given below:

//Program 1: OperatorDemo.java

public class OperatorDemo

{

public static void main (String [] args){

int a = 5, b =3;

41

double x = 25.50, y = 5.25;

System.out.println("Variable values are :\n");

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" x = " + x);

System.out.println(" y = " + y);

//Addition

System.out.println("\nAddition...");

System.out.println(" a + b = " + (a + b));

System.out.println(" x + y = " + (x + y));

//Subtraction

System.out.println("\nSubtraction...");

System.out.println(" a - b = " + (a - b));

System.out.println(" x - y = " + (x - y));

//Multiplication

System.out.println("\nMultiplication...");

System.out.println(" a * b = " + (a * b));

System.out.println(" x * y = " + (x * y));

//Division operation

System.out.println("\nDivision...");

System.out.println(" a / b = " + (a / b));

System.out.println(" x / y = " + (x / y));

//Modulus operation

System.out.println("\nModulus...");

System.out.println(" a % b = " + (a % b));

System.out.println(" x % y = " + (x % y));

}

}

The output of the above program will be:

42

2.4.2 Relational Operators

Java has several expressions for testing equality and magnitude. All of these expressions

return a boolean value (that is, true or false). Table 3.2 shows the relational operators:

Table 2.4 Relational Operators

Example

public class Test {

43

 public static void main(String args[]) {

 int a = 10;

 int b = 20;

 System.out.println("a == b = " + (a == b));

 System.out.println("a != b = " + (a != b));

 System.out.println("a > b = " + (a > b));

 System.out.println("a < b = " + (a < b));

 System.out.println("b >= a = " + (b >= a));

 System.out.println("b <= a = " + (b <= a));

 }

}

Output

a == b = false

a != b = true

a > b = false

a < b = true

b >= a = true

b <= a = false

2.4.3 Logical Operators

Expressions that result in boolean values (for example, the Relational operators) can be

combined by using logical operators that represent the logical combinations AND, OR,

XOR, and logical NOT. For AND operation, the && symbol is used. The expression will

be true only if both operands tests are also true; if either expression is false, the entire

expression is false. For OR expressions, the || symbol is used. OR expressions result in true

if either or both of the operands is also true; if both operands are false, the expression is

false. In addition, there is the XOR operator ^, which returns true only if its operands are

different (one true and one false, or vice versa) and false otherwise (even if both are true).

For NOT, the ! symbol with a single expression argument is used. The value of the NOT

expression is the negation of the expression; if x is true, x is false.

Example

44

public class Test

{

 public static void main(String args[]) {

 boolean a = true;

 boolean b = false;

 System.out.println("a && b = " + (a&&b));

 System.out.println("a || b = " + (a||b));

 System.out.println("!(a && b) = " + !(a && b));

 }

}

Output

a && b = false

a || b = true

!(a && b) = true

2.4.4 Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. The usual

assignment operator is ‘=’. The general syntax is:

variableName = value;

For example, sum = 0; // 0 is assigned to the variable sum x = x + 1;

Like C/C++, Java aslo supports the shorthand form of assignments.

For example, the statement x = x + 1; can be written as x += 1; in shorthand form.

Example

public class Test

{

 public static void main(String args[]) {

 int a = 10;

 int b = 20;

 int c = 0;

 c = a + b;

 System.out.println("c = a + b = " + c);

45

 c += a ;

 System.out.println("c += a = " + c);

 c -= a ;

 System.out.println("c -= a = " + c);

 c *= a ;

 System.out.println("c *= a = " + c);

 a = 10;

 c = 15;

 c /= a ;

 System.out.println("c /= a = " + c);

 a = 10;

 c = 15;

 c %= a ;

 System.out.println("c %= a = " + c);

 c <<= 2 ;

 System.out.println("c <<= 2 = " + c);

 c >>= 2 ;

 System.out.println("c >>= 2 = " + c);

 c >>= 2 ;

 System.out.println("c >>= 2 = " + c);

 c &= a ;

 System.out.println("c &= a = " + c);

 c ^= a ;

 System.out.println("c ^= a = " + c);

 c |= a ;

 System.out.println("c |= a = " + c);

 }

}

Output

c = a + b = 30

c += a = 40

c -= a = 30

c *= a = 300

46

c /= a = 1

c %= a = 5

c <<= 2 = 20

c >>= 2 = 5

c >>= 2 = 1

c &= a = 0

c ^= a = 10

c |= a = 10

2.4.5 Increment and Decrement Operators

The unary increment and decrement operators ++ and -- comes in two forms, prefix and

postfix. They perform two operations. They increment (or decrement) their operand, and

return a value for use in some larger expression. In prefix form, they modify their operand

and then produce the new value. In postfix form, they produce their operand’s original

value, but modify the operand in the background. For example, let us take the following

two expressions:

y = x++;

y = ++x;

These two expressions give very different results because of the difference between prefix

and postfix. When we use postfix operators (x++ or x--), y gets the value of x before before

x is incremented; using prefix, the value of x is assigned to y after the increment has

occurred.

Example

/ Increment and Decrement Operators in Java Example

package JavaOperators;

import java.util.Scanner;

public class IncrementandDecrement {

 private static Scanner sc;

 public static void main(String[] args) {

 int i, j;

 sc = new Scanner(System.in);

 System.out.println(" Please Enter two integer Value: ");

47

 i = sc.nextInt();

 j = sc.nextInt();

 System.out.println("----JAVA INCREMENT OPERATOR EXAMPLE---- \n");

 System.out.format(" Value of i : %d \n", i); //Original Value

 System.out.format(" Value of i : %d \n", i++); // Using increment Operator

 System.out.format(" Value of i : %d \n", i); //Incremented value

 System.out.println("----JAVA DECREMENT OPERATOR EXAMPLE---- \n");

 System.out.format(" Value of j : %d \n", j); //Original Value

 System.out.format(" Value of j : %d \n", j--); // Using Decrement Operator

 System.out.format(" Value of j : %d \n", j); //Decrement value

 }

}

OUTPUT

2.4.6. Bitwise Operators

Bitwise operators are used to perform operations on individual bits in integers. Table 2.6

summarizes the bitwise operators available in the JAVA programming language. When

both operands are boolean, the bitwise AND operator (&) performs the same operation as

logical AND (&&). However, & always evaluates both of its operands and returns true if

both are true. Likewise, when the operands are boolean, the bitwise OR (|) performs the

same operation as is similar to logical OR (||). The | operator always evaluates both of its

operands and returns true if at least one of its operands is true. When their operands are

numbers, & and | perform bitwise manipulations.

48

Table 2.6 Bitwise operators in java

A shift operator performs bit manipulation on data by shifting the bits of its first operand

right or left. For example, if op1 and op2 are two operands, then the statement

op1 << op2;

shift bits of op1 left by distance op2; fills with zero bits on the righthand side and op1 >>

op2; shift bits of op1 right by distance op2; fills with highest (sign) bit on the left-hand side.

op1 >>> op2;

shift bits of op1 right by distance op2; fills with zero bits on the lefthand side. Each operator

shifts the bits of the left-hand operand over by the number of positions indicated by the

right-hand operand. The shift occurs in the direction indicated by the operator itself.

For example, the statement 25 >> 1; shifts the bits of the integer 25 to the right by one

position. The binary representation of the number 25 is 11001. The result of the shift

operation of 11001 shifted to the right by one position is 1100, or 12 in decimal.

Example

public class Test

{

 public static void main(String args[]) {

 int a = 60; /* 60 = 0011 1100 */

 int b = 13; /* 13 = 0000 1101 */

49

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 System.out.println("a & b = " + c);

 c = a | b; /* 61 = 0011 1101 */

 System.out.println("a | b = " + c);

 c = a ^ b; /* 49 = 0011 0001 */

 System.out.println("a ^ b = " + c);

 c = ~a; /*-61 = 1100 0011 */

 System.out.println("~a = " + c);

 c = a << 2; /* 240 = 1111 0000 */

 System.out.println("a << 2 = " + c);

 c = a >> 2; /* 15 = 1111 */

 System.out.println("a >> 2 = " + c);

 c = a >>> 2; /* 15 = 0000 1111 */

 System.out.println("a >>> 2 = " + c);

 }

}

Output

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

a << 2 = 240

a >> 2 = 15

a >>> 2 = 15

2.4.7 Special Ternary Operators

Java includes a special ternary (three-way) operator that can replace certain types of if-

thenelse statements. This operator is the ?. It can seem somewhat confusing at first, but the

? can be used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

50

Here, expression1 can be any expression that evaluates to a boolean value. If expression1

is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of

the ? operation is that of the expression evaluated. Both expression2 and expression3 are

required to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left

of the question mark. If denom equals zero, then the expression between the question mark

and the colon is evaluated and used as the value of the entire ? expression. If denom does

not equal zero, then the expression after the colon is evaluated and used for the value of the

entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute

value of a variable.

// Demonstrate ?.

class Ternary {

public static void main(String args[]) {

int i, k;

i = 10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

i = -10;

k = i < 0 ? -i : i; // get absolute value of i

System.out.print("Absolute value of ");

System.out.println(i + " is " + k);

}

}

The output generated by the program is shown here:

Absolute value of 10 is 10

Absolute value of -10 is 10

51

2.6 Precedence in Arithmetic Operators

Table 2.7 shows the order of precedence for Java operators, from highest to lowest.

Operators in the same row are equal in precedence. In binary operations, the order of

evaluation is left to right (except for assignment, which evaluates right to left). Although

they are technically separators, the [], (), and . can also act like operators. In that capacity,

they would have the highest precedence. Also, notice the arrow operator (->). It was added

by JDK 8 and is used in lambda expressions.

Table 2.7 The Precedence of the Java Operators

52

2.6 Type Casting

If the two types are compatible, then Java will perform the conversion automatically. For

example, it is always possible to assign an int value to a long variable. However, not all

types are compatible, and thus, not all type conversions are implicitly allowed. For instance,

there is no automatic conversion defined from double to byte. Fortunately, it is still possible

to obtain a conversion between incompatible types. To do so, you must use a cast, which

performs an explicit conversion between incompatible types. Let’s look at both automatic

type conversions and casting.

Table 2.8 Casts that result in No Loss of Information

2.6.1 Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion

will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the

int type is always large enough to hold all valid byte values, so no explicit cast statement

is required. For widening conversions, the numeric types, including integer and floating-

point types, are compatible with each other. However, there are no automatic conversions

from the numeric types to char or boolean. Also, char and boolean are not compatible with

each other. As mentioned earlier, Java also performs an automatic type conversion when

storing a literal integer constant into variables of type byte, short, long, or char.

2.6.2 Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For

53

example, what if you want to assign an int value to a byte variable? This conversion will

not be performed automatically, because a byte is smaller than an int. This kind of

conversion is sometimes called a narrowing conversion, since you are explicitly making

the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is

simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example,

the following fragment casts an int to a byte. If the integer’s value is larger than the range

of a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s

range.

int a;

byte b;

// …

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation. As you know, integers do not have fractional components. Thus,

when a floating-point value is assigned to an integer type, the fractional component is lost.

For example, if the value 1.23 is assigned to an integer, the resulting value will simply be

1. The 0.23 will have been truncated. Of course, if the size of the whole number component

is too large to fit into the target integer type, then that value will be reduced modulo the

target type’s range. General Syntax for Type Casting is:

Type variable1 = (type) variable2

The process of converting one data type to another is called casting. Casting is often

necessary when a method returns a type different than the one, we require.

2.7 Check Your Progress

1. Java has ……………………. operators for basic arithmetic.

2. In relational operators, all of expressions return a ……………………value.

3. IN Logical operators, for AND operation, the …………….. symbol is used.

54

4. IN Logical operators, for …………………. operation, the || symbol is used.

5. The unary increment and decrement operators ++ and -- comes in two

forms,………………………………...

6. ……………..operators are used to perform operations on individual bits in integers.

7. Java includes a special ternary (three-way) operator that can replace certain types

of ………………………..statements

8. The smallest individual units in a program are known as…………………….

9. …………………………….in Java are a sequence of characters such as digits,

letters and other characters that represent constant values to be stored in a variable.

2.8 Summary

An operator is a symbol that takes one or more arguments and operates on them to produce

a result. Operators are special symbols that are commonly used in expressions. An operator

performs a function on one, two, or three operands. An operator that requires one operand

is called a unary operator. Operators in Java include arithmetic, assignment, increment and

decrement, Relational and logical operations.

Java has five operators for basic arithmetic. In Relational Operators, Java has several

expressions for testing equality and magnitude. All of these expressions return a boolean

value (that is, true or false). In Logical operators, Expressions that result in boolean values

(for example, the Relational operators) can be combined by using logical operators that

represent the logical combinations AND, OR, XOR, and logical NOT. Assignment

operators are used to assign the value of an expression to a variable. The usual assignment

operator is ‘=’. The unary increment and decrement operators ++ and -- comes in two forms,

prefix and postfix. They perform two operations. They increment (or decrement) their

operand, and return a value for use in some larger expression. In prefix form, they modify

their operand and then produce the new value. In postfix form, they produce their operand’s

original value, but modify the operand in the background. Bitwise operators are used to

perform operations on individual bits in integers.

The smallest individual units in a program are known as tokens. A Java program is basically

a collection of classes. There are five types of tokens in Java language. They are: Keywords,

Identifiers, Literals, Operators and Separators.

55

If the two types are compatible, then Java will perform the conversion automatically, it is

called Type Casting. When one type of data is assigned to another type of variable, an

automatic type conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

2.9 Keywords

AND- The expression will be true only if both operands tests are also true; if either

expression is false, the entire expression is false.

OR- OR expressions result in true if either or both of the operands is also true

XOR- which returns true only if its operands are different (one true and one false, or vice

versa) and false otherwise (even if both are true)

Special Ternary (?)- It can replace certain types of if- thenelse statements.

Dynamic Initialization- Java allows variables to be initialized dynamically, using any

expression valid at the time the variable is declared.

Primitive Type- A variable of primitive type contains a single value of the appropriate size

and format for its type: a number, a character, or a boolean value. Primitive types are also

termed as intrinsic or built-in types.

Tokens- The smallest individual units in a program are known as tokens. A Java program

is basically a collection of classes. There are five types of tokens in Java language. They

are: Keywords, Identifiers, Literals, Operators and Separators.

56

2.10 Self-Assessment Test

Q.1 Explain any four types of operators.

Q.2. Briefly explain the concept of increment and decrement operator.

Q.3 What do you understand by Dynamic Initialization.

Q.4 Differentiate between Print() and Println() methods.

Q.5 Explain various tokens in Java.

Q.6 Explain concept of Type Casting in Java with example.

2.11 Answers to check your progress

1. five

2. boolean

3. &&

4. OR

5. prefix and postfix

6. Bitwise

7. if- thenelse

8. tokens

9. Literals

2.12 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

57

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 3

Control Structures and Looping

STRUCTURE

3.0 Learning Objective

3.1 Introduction

3.2 Control Structure with If Statement

 3.2.1 Simple If Statement

 3.2.2 If……...Else Statement

 3.2.3 Nesting of If…...Else Statement

 3.2.4 The Else If Ladder

3.3 The while Statement

 3.3.1 The Do Statement

3.4 The for Statement

 3.4.1 Additional Features of for Loop

 3.4.2 Nesting of for Loops

 3.4.3 The Enhanced for Loop

3.5 The switch Statement

3.6 Break & Continue Statement

 3.6.1 Break Statement

 3.6.2 Continue Statement

3.7 Return Statement

3.8 Check Your Progress

3.9 Summary

3.10 Keywords

3.11 Self-Assessment Test

3.12 Answers to check your progress

3.13 References / Suggested Readings

58

3.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• Learn about control and flow structure.

• Learn about If. Else statement, While statement, Switch statement and for loop.

• Learn about Break, Continue and return statement.

3.1 INTRODUCTION

Java provides a rich operator environment. Most of its operators can be divided into the

following four groups: arithmetic, bitwise, relational, and logical. Java also defines some

additional operators that handle certain special situations. This chapter describes all of

Java’s operators. This chapter will describe the available operators that you can add to your

lines of code as you program more complex scenarios. Operators are mainly used to control,

modify and compare data in a Java language environment. This chapter will emphasize on

a non-sequential method of Java programming. You will get acquainted with the if-then-

else and different loop statements. With our previous simple program examples, we were

oriented that a Java class is executed in one direction – from the topmost line of code up to

the bottom, or what we call sequential programming. However, there will be cases that you

will be required to write codes in a non-sequential fashion, especially for those more

complicated scenarios. This is accomplished using logical and looping statements, so you

can control the flow of your program to perform more complex functions.

3.2 Control Structure with If Statement

While programing, we have a number of situations where we may have to change the order

of execution of statements based on certain conditions/decisions. This involves a kind of

decision making to see whether a particular condition has occurred or not and then direct

the computer to execute certain statements accordingly. The statements used to handle

those situations are called decision making statement.

59

3.2.1 Simple if Statement

The if statement enables our program to selectively execute other statements, based on

some criteria. The syntax of if statement is:

The statement-block may be a single statement or a group of statements. If the boolean-

expression evaluates to true, then the block of code inside the if statement will be executed.

If not the first set of code after the end of the if statement (after the closing curly brace) will

be executed.

For example,

if (percentage>=40)

{

System.out.println(“Pass “);

}

In this case, if percentage contains a value that is greater than or equal to 40, the expression

is true, and println() will execute. If percentage contains a value less than 40, then the

println() method is bypassed. What if we want to perform a different set of statements if

the expression is false? We use the else statement for that.

Example :

public class Main {

 public static void main(String[] args) {

 if (20 > 18) {

 System.out.println("20 is greater than 18"); // obviously

 }

 }

}

60

Output : 20 is greater than 18

3.2.2 If……...Else Statement

The general syntax of if-else statement is:

Let us consider the same example but at this time the output should be Pass or Fail

depending on percentage of marks. i.e., if percentage is equal to or more than 40 then the

output should be Pass; otherwise Fail. This can be done by using an if statement along with

an else statement.

Here is the segment of code:

if (percentage>=40)

System.out.println(“Pass”);

else

System.out.println(“Fail”);

When a series of decisions are involved, we may have to use more than one if-else

statements in nested form.

Example :

public class Main {

 public static void main(String[] args) {

 int time = 20;

 if (time < 18) {

 System.out.println("Good day.");

 } else {

 System.out.println("Good evening.");

 }

61

 }

}

Output : Good evening.

3.2.3. Nesting of If…...Else Statement

A nested if is an if statement that is the target of another if or else. Nested ifs are very

common in programming. When you nest ifs, the main thing to remember is that an else

statement always refers to the nearest if statement that is within the same block as the else

and that is not already associated with an else.

Here is an example:

if(i == 10)

{

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in

the same block (even though it is the nearest if without an else). Rather, the final else is

associated with if(i==10). The inner else refers to if(k>100) because it is the closest if

within the same block.

3.2.4 The Else If Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-

elseif ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

62

statement;

.

.

.

else

statement;

The if statements are executed from the top down. As soon as one of the conditions

controlling the if is true, the statement associated with that if is executed, and the rest of

the ladder is bypassed. If none of the conditions is true, then the final else statement will be

executed. The final else acts as a default condition; that is, if all other conditional tests fail,

then the last else statement is performed. If there is no final else and all other conditions

are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular

month is in.

// Demonstrate if-else-if statements.

class IfElse

{

public static void main(String args[])

{

int month = 4; // April

String season;

if(month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

else

63

season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}

}

Here is the output produced by the program:

April is in the Spring. You might want to experiment with this program before moving on.

As you will find, no matter what value you give month, one and only one assignment

statement within the ladder will be executed.

3.3 The while Statement

In looping, a sequence of statements are executed until some conditions for the termination

of the loop are satisfied. The process of repeatedly executing a block of statements is known

as looping. At this point, we should remember that Java does not support goto statement.

Like C/C++, Java also provides the three different statements for looping. These are:

• while

• do-while

The while and do-while statements

We use a while statement to continually execute a block while a condition remains true.

The general syntax of the while statement is:

First, the while statement evaluates expression , which must return a boolean value. If the

expression returns true, the while statement executes the statement(s) in the while block.

64

The while statement continues testing the expression and executing its block until the

expression returns false.

The Java programming language provides another statement that is similar to the while

statement: the do-while statement.

The general syntax of do-while is:

Statements within the block associated with a do-while are executed at least once. Instead

of evaluating the expression at the top of the loop, do-while evaluates the expression at the

bottom. Here is the previous program rewritten to use do-while loop.

A program of while loop is shown below:

class Fibo

{

public static void main(String args[])

{

System.out.println("0\n1");

int n0=0,n1=1,n2=1;

while(n2<50)

{

System.out.println(n2);

n0=n1;

n1=n2;

n2=n1+n0;

}

System.out.println(n2);

}

}

65

The output of the above program will be the Fibonacci series between 0 to 50 (i.e., 0 1 1 2

3 5 8 13 21 34).

A program of do-while loop is shown below:

public class Main {

 public static void main(String[] args) {

 int i = 0;

 do {

 System.out.println(i);

 i++;

 }

 while (i < 5);

 }

}

Output :

0

1

2

3

4

3.4 The for Statement

The for statement provides a compact way to iterate over a range of values. The general

form of the for statement can be expressed like this:

66

The initialization is an expression that initializes the loop. It is executed once at the

beginning of the loop. The termination_condition determines when to terminate the loop.

This condition is evaluated at the top of each iteration of the loop. When the condition

evaluates to false, the loop terminates. Finally, increment is an expression that gets

invoked after each iteration through the loop. All these components are optional. In

fact, to write an infinite loop, we can omit all three expressions:

for (; ;)

{

// infinite loop

}

Often, for loops are used to iterate over the elements in an array or the characters in a string.

The following program segment uses a for loop to calculate the summation of 1 to 50:

for (i =1; i <= 50; i + +)

{

sum = sum + i;

}

A program of For loop is shown below:

public class Main {

 public static void main(String[] args) {

 for (int i = 0; i < 5; i++) {

 System.out.println(i);

 }

 }

}

67

Output :

0

1

2

3

4

3.5 The switch Statement

We have seen that when one of the many alternatives is to be selected, we can design a

program using if statements to control the selection. However, the program becomes

difficult to read and follow when the number of alternatives increases. Like C/C++, JAVA

has a built-in multiway decision statement known as a switch. The switch statement

provides variable entry points to a block. It tests the value of a given variable or expression

against a list of case values and when a match is found, a block of statements associated

with that case is executed.

The general form of switch statement is as follows :

The expression is evaluated and compared in turn with each value prefaced by the case

keyword. The values must be constants (i.e., determinable at compile-time) and may be

of type byte, char, short, int, or long.

68

Example :

int day = 4;

switch (day) {

 case 1:

 System.out.println("Monday");

 break;

 case 2:

 System.out.println("Tuesday");

 break;

 case 3:

 System.out.println("Wednesday");

 break;

 case 4:

 System.out.println("Thursday");

 break;

 case 5:

 System.out.println("Friday");

 break;

 case 6:

 System.out.println("Saturday");

 break;

 case 7:

 System.out.println("Sunday");

 break;

}

Output:

"Thursday" (day 4)

69

3.6 Break & Continue Statement

3.6.1 Break Statement

In JAVA, the break statements has two forms: unlabelled and labelled. We have seen the

unlabelled form of the break statement used with switch earlier. As noted there, an

unlabelled break terminates the enclosing switch statement, and the flow of control

transfers to the statement immediately following the switch. It can be used to terminate a

for, while, or do-while loop. A break (unlabelled form) statement, causes an immediate

jump out of a loop to the first statement after its end. When the break statement is

encountered inside a loop, the loop is immediately exited and the program continues with

the statement immediately following the loop. When the loop is nested, the break would

only exit from the loop containing it. This means, the break will exit only a single loop.

Example :

public class BreakExample1 {

 public static void main(String args[]){

 int num =0;

 while(num<=100)

 {

 System.out.println("Value of variable is: "+num);

 if (num==2)

 {

 break;

 }

 num++;

 }

 System.out.println("Out of while-loop");

 }

}

Output:

Value of variable is: 0

Value of variable is: 1

Value of variable is: 2

Out of while-loop

70

3.6.2 Continue Statement

The continue statement causes an immediate branch to the end of the innermost loop that

encloses it, skipping over any intervening statements. It is written as: continue ;

A continue does not cause an exit from the loop. Instead, it immediately initiates the next

iteration. We can use the continue statement to skip the current iteration of a for, while, or

do-while loop. In Java, we can give a label to a block of statements. A label is any valid

Java variable name. To give a label to a loop, we have to place the label name before the

loop with a colon at the end.

For example,

loop1: for (...............)

{

.................

................

}

...............

We have seen that a simple break statement causes the control to jump outside the nearest

loop and a simple continue statement returns the current loop. If we want to jump outside

a nested loop or to continue a loop that is outside the current one, then we may have to use

the labelled break and labelled continue statement.

Example

public class ContinueExample

{

 public static void main(String args[]){

 for (int j=0; j<=6; j++)

 {

 if (j==4)

 {

 continue;

 }

 System.out.print(j+" ");

 }

 }

}

71

Output:

0 1 2 3 5 6

3.7 Return Statement

The last of the branching statements is the return statement. We can use return to exit from

the current method. The flow of control returns to the statement that follows the original

method call. The return statement has two forms: one that returns a value and one that

doesnot. To return a value, simply put the value (or an expression that calculates the value)

after the return keyword: return sum; The data type of the value returned by return must

match the type of the method’s declared return value. When a method is declared void,

use the form of return that doesnot return a value: return;

Example :

class ReturnStatement

{

 public static void main(String arg[])

 {

 boolean t = true;

 System.out.println("Before the return"); // LINE A

 if(t) return; // return to caller

 System.out.println("This won't execute"); // LINE B

 }

}

Output :

Before the return

3.8 Check Your Progress

Write true or false (Q.1 to Q.4)

1. A program stops its execution when a break statement is encountered.

2. One if can have more than one else if clause.

72

3. A continue cause an exit from the loop.

4. A break statement causes an immediate jump out of a loop to the first statement

after its end.

5. In JAVA, the break statements has two forms: ……………and ………………...

6. The basic syntax for continue statement is: …………………………...

7. We can use ……………………………to exit from the current method.

8. Basic syntax for Break statement is …………………………………

9. Like C/C++, JAVA has a built-in multiway decision statement known

as……………

3.9 Summary

While programing, we have a number of situations where we may have to change the order

of execution of statements based on certain conditions/decisions. This involves a kind of

decision making to see whether a particular condition has occurred or not and then direct

the computer to execute certain statements accordingly. The statements used to handle

those situations are called decision making statement. In while loop, , a sequence of

statements are executed until some conditions for the termination of the loop are satisfied.

The process of repeatedly executing a block of statements is known as looping. Java also

provides the three different statements for looping. These are: while, do-while.

In JAVA, the break statements have two forms: unlabelled and labelled. The continue

statement causes an immediate branch to the end of the innermost loop that encloses it,

skipping over any intervening statements. It is written as: continue;

The last of the branching statements is the return statement. We can use return to exit from

the current method. The flow of control returns to the statement that follows the original

method call. The return statement has two forms: one that returns a value and one that does

not.

3.10 Keywords

print()- To print a statement within same line.

println()- To print a statement in the next line.

73

goto- Java doesn’t support goto keyword. Instead, it uses While loop.

Break- A break statement, causes an immediate jump out of a loop to the first statement

after its end.

Continue- The continue statement causes an immediate branch to the end of the innermost

loop that encloses it, skipping over any intervening statements.

Return- We can use return to exit from the current method.

3.11 Self-Assessment Test

Q.1 What do you mean by looping? What are the different types of loop in the Java

programming language? Briefly explain with their syntax.

Q.2. Write a Java program to display the multiplication table of a particular number

using for loop.

Q.3. What do you understand with control structure? Explain If-else with proper

example.

Q.4. What is the syntax for Do-while loop structure? Give an example.

Q.5. What are the necessary conditions for a FOR Loop? Explain with example.

Q.6. Differentiate between Break and Continue Statement with example.

Q.7. Write down a program to illustrate the concept of Return Statement.

3.12 Answers to check your progress

1. False

2. True

3. False

4. True

5. unlabelled and labelled.

6. continue;

7. return

8. break;

9. Switch

74

3.13 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

75

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 4

Inheritance and Polymorphism

STRUCTURE

4.0 Learning Objective

4.1 Introduction

4.2 Inheritance: Extending a Class

4.3 Single Inheritance

4.4 Multilevel Inheritance

4.5 Hierarchical Inheritance

4.6 Interfaces: Multiple Inheritance

 4.6.1 Defining Interfaces

 4.6.2 Extending Interfaces

 4.6.3 Implementing Interfaces

 4.6.4 Default Interface Methods

 4.6.5 Default Method Fundamentals

 4.6.6 Multiple Inheritance Issues

 4.6.7 Use static Methods in an Interface

4.7 Abstraction through Abstract Classes

 4.7.1 Using Final with Inheritance

4.8 Polymorphism

 4.8.1 Virtual Methods

4.9 Check Your Progress

4.10 Summary

4.11 Keywords

4.12 Self-Assessment Test

4.13 Answers to check your progress

4.14 References / Suggested Readings

76

4.0 LEARNING OBJECTIVE

After going through this chapter, you will be able to:

• Gain the concept of Inheritance.

• Differentiate between different form of Inheritance.

• Illustrate the basic concept of Interface

• Know how to use Interfaces.

• Understand the concept of Polymorphism.

4.1 INTRODUCTION

Inheritance is one of the cornerstones of object-oriented programming because it allows the

creation of hierarchical classifications. Using inheritance, you can create a general class

that defines traits common to a set of related items. This class can then be inherited by

other, more specific classes, each adding those things that are unique to it. In the

terminology of Java, a class that is inherited is called a superclass. The class that does the

inheriting is called a subclass. Therefore, a subclass is a specialized version of a superclass.

It inherits all of the members defined by the superclass and adds its own, unique elements.

An interface is a reference type in Java. It is similar to class. It is a collection of abstract

methods. A class implements an interface, thereby inheriting the abstract methods of

the interface. Along with abstract methods, an interface may also contain constants,

default methods, static methods, and nested types.

Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class

object.

4.2 Inheritance: Extending a Class

77

Reusability is one of the important feature of object-oriented programming and it can be

achieved through inheritance. Java supports the concepts of inheritance. With the use of

inheritance, the information is made manageable in a hierarchical order. Inheritance can be

defined as the process where one object acquires the properties of another. When we want

to create a new class and there is already a class that includes some of the code that we

want, we can derive the new class from the existing class. In doing this, we can reuse the

fields and methods of the existing class without rewriting them again.

A class that is derived from another class is called a subclass (also a derived class, extended

class, or child class). A subclass inherits all the members (fields, methods, and nested

classes) from its superclass. The class from which the subclass is derived is called a

superclass (also a base class or a parent class). Constructors cannot be inherited by

subclasses, but the constructor of the superclass can be invoked from the subclass. In Java,

inheritance is implemented by the process of extension. To define a new class as an

extension of an existing class, we simply use an extend clause in the header mof the new

classes definition. The concept of inheritance is used to make the things from general to

more specific.

For example, when we hear the word 'vehicle' then we get an image in our mind that it

moves from one place to another and that is used for traveling or carrying goods but the

word vehicle does not specify whether it is two or three or four-wheeler because it is a

general word. But the word car makes a more specific image in mind than vehicle, that the

car has four wheels . It concludes from the example that car is a specific word and vehicle

is the general word. If we think technically about this example then vehicle is the super

class (or base class or parent class) and car is the subclass or child class because every car

has the features of its parent (in this case vehicle) class. At this point, we are going to

describe the types of inheritance supported by Java.

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

78

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args []) {

A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

The output from this program is shown here:

79

Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is

why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred

to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone

class. Being a superclass for a subclass does not mean that the superclass cannot be used

by itself. Further, a subclass can be a superclass for another subclass.

4.3 Single Inheritance

When a subclass is derived from its parent class then this mechanism is known as single

inheritance. In case of single inheritance there is only a sub class and its parent class. It is

also called one level inheritance. The pictorial representation of single inheritance is as

follows:

For example, let us consider a simple example for the demonstration of single inheritance:

//Program 4.1: B.java (Program showing Single Inheritance)

class A // super class A

{

int x;

int y;

int getValue(int p, int q) {

80

x = p;

y = q;

return(0);

}

void Show() {

System.out.println(x);

}

}

class B extends A // subclass B inheriting getValue A

{

public static void main(String args[]) {

A a = new A();

a.getValue(5,10);

a.Show();

}

void display() {

System.out.println("I am in B");

}

}

The output will display only 5. The getValue() and show() are members of superclass A.

With the statement a.getValue(5,10); the getValue() is inherited from class A. As the

Show() method of class A is displaying only the first parameter so it is displaying only one

value in the subclass B although it is taking two values 5 and 10 when it invoked by the

statement a.Show() in class subclass B .

4.4 Multilevel Inheritance

It is the enhancement of the concept of inheritance. When a subclass is derived from a

derived class then this mechanism is known as the multilevel inheritance. The derived class

is called the subclass or child class for its parent class and this parent class works as the

child class for its just above (parent) class. Multilevel inheritance can go up to any number

of level. The pictorial representation of multilevel inheritance is as follows:

81

// Program 4.2 : C.java (Program showing Mutilevel Inheritance)

class A

{

int x;

int y;

int get(int p, int q)

{

x = p;

y = q;

return(0);

}

void show()

{

System.out.println(x);

}

}

class B extends A //subclass B inheriting from A

{

void Showb()

{

System.out.println("I am in B ");

}

}

class C extends B //subclass C inheriting from B

{

void Display()

82

{

System.out.println("I am in C");

}

public static void main(String args[])

{

A a = new A();

a.get(5,10);

a.show();

}

}

The output of the above program will be 5. Here, a is an object of superclass A and it is

inheriting get() and show() methods of A. The subclass B has one method Showb(). The

class C is the subclass of B and it has one Display() method. We can also create objects of

class B and C and use these two method Showb() and Display() for displaying the messages

“I am in B” and “I am in C” respectively.

The mechanism of inheriting the features of more than one base class into a single class is

known as multiple inheritance. Java does not support multiple inheritance. But the

multiple inheritance can be achieved by using the interface. In Java Multiple Inheritance

can be achieved through use of Interfaces by implementing more than one interfaces in a

class. The concept of interface will be discussed in the next unit of this block.

4.5 Hierarchical Inheritance

When two or more classes inherits a single class, it is known as hierarchical inheritance.

In the example given below, Dog and Cat classes inherits the Animal class, so there is

hierarchical inheritance.

Example:

File: TestInheritance3.java

class Animal{

void eat(){System.out.println("eating...");}

}

83

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}}

Output:

meowing...

eating...

4.6 Interfaces: Multiple Inheritance

An interface is a collection of methods and variables like a class but it is not a class. An

interface defines a set of methods but does not implement them. Writing an interface is

similar to writing a class still there exists some differences. A class describes the attributes

and behaviours of an object. An interface contains behaviours that a class implements.

Definition

An interface is a named collection of method definitions (without implementations). An

interface can also declare constants.

• An interface can contain any number of methods.

• An interface is written in a file with a .java extension, with the name of the interface

matching the name of the file.

• The bytecode of an interface appears in a .class file.

• Interfaces appear in packages, and their corresponding bytecode file must be in a

directory structure that matches the package name.

84

However, an interface is different from a class in several ways, including:

• You cannot instantiate an interface.

• An interface does not contain any constructors.

• All of the methods in an interface are abstract.

• An interface cannot contain instance fields. The only fields that can appear in an

interface must be declared both static and final.

• An interface is not extended by a class; it is implemented by a class.

• An interface can extend multiple interfaces.

Remember that - to implement an interface, a class must create the complete set of methods

defined by the interface.

4.6.1 Defining Interfaces

The syntax for defining an interface is very similar to that for defining a class, which is

shown below :

interface interfaceName

{

return-type methodName1(parameter-list);

return-type methodNname2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

..........................

..........................

return-type methodNameN(parameter-list);

type final-varnameN = value;

}

From the above syntax we have seen that an interface definition has two components: the

interface declaration and the interface body. The interface declaration declares various

attributes about the interface, such as its name and whether it extends other interfaces. The

interface body contains the constant and the method declarations for that interface.

Variables declared inside of interface declarations are implicitly final and static, meaning

they cannot be changed by the implementing class. They must also be initialized with a

85

constant value. All methods and variables are implicitly public if the interface, itself, is

declared as public.

Example of interface Area and Shape are shown below :

interface Area

{

final static float pi =3.142F;

float compute (float x, float y);

void show();

}

and

interface Shape

{

public double area();

public double volume();

}

4.6.2 Extending Interfaces

Like classes, interfaces can be extended i.e. an interface can be sub interfaced from other

interfaces. The extends keyword is used to extend an interface, and the child interface

inherits the methods of the parent interface. The syntax for using the extend keyword is

shown below:

interface name2 extends name1

{

body of name2

}

Here, name2 is the child interface and name1 is the parent interface.

In following the Sports interface is extended by the Hockey and the Football interfaces.

public interface Sports

{

public void setHomeTeam(String name);

public void setVisitingTeam(String name);

}

86

public interface Football extends Sports

{

public void homeTeamScored(int points);

public void visitingTeamScored(int points);

public void endOfQuarter(int quarter);

}

public interface Hockey extends Sports

{

public void homeGoalScored();

public void visitingGoalScored();

public void endOfPeriod(int period);

public void overtimePeriod(int ot);

}

Here, in the Hockey interface has four methods, but it inherits two method from Sports. So,

the class that implements Hockey needs to implement all six methods. Similarly, a class

that implements Football needs to define the three methods from Football and the two

methods from Sports.

The public access specifier indicates that the interface can be used by any class in any

package. If you do not specify that the interface is public, your interface will be accessible

only to classes defined in the same package as the interface.

An interface can extend other interfaces, just as a class can extend or subclass another class.

However, whereas a class can extend only one other class, an interface can extend any

number of interfaces. The interface declaration includes a comma-separated list of all the

interfaces that it extends.

4.6.3 Implementing Interfaces

When a class implements an interface, you can think of the class as signing a contract,

agreeing to perform the specific behaviors of the interface. If a class does not perform all

the behaviors of the interface, the class must declare itself as abstract class.

To declare a class that implements an interface, you include an implements clause in the

class declaration as shown in the following :

87

class classname implements Interfacename

{

// body of classname

}

For example, we have already define the interface Shape. Let

us try to implement it using the Point class.

Program 4.3 : Implementation of Shape interface

// Point.java

interface Shape

{

public double area();

public double volume();

}

public class Point implements Shape

{

static int x, y;

public Point()

{

x = 0;

y = 0;

}

public double area()

{

return 0;

}

public double volume()

{

return 0;

}

public static void print()

{

System.out.println("\n Point: " + x + "," + y);

}

88

public static void main(String args[])

{ // object declaration

Point p = new Point();

p.print();

}

}

Output :

Fig 4.1 Output of Program 4.3

One class can implement more than one interface, so the implements keyword is followed

by a comma-separated list of the interfaces implemented by the class.

4.6.4 Default Interface Methods

As explained earlier, prior to JDK 8, an interface could not define any implementation

whatsoever. This meant that for all previous versions of Java, the methods specified by an

interface were abstract, containing no body. This is the traditional form of an interface and

is the type of interface that the preceding discussions have used. The release of JDK 8 has

changed this by adding a new capability to interface called the default method. A default

method lets you define a default implementation for an interface method. In other words,

by use of a default method, it is now possible for an interface method to provide a body,

rather than being abstract. During its development, the default method was also referred to

as an extension method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which interfaces

could be expanded without breaking existing code. Recall that there must be

implementations for all methods defined by an interface. In the past, if a new method were

89

added to a popular, widely used interface, then the addition of that method would break

existing code because no implementation would be found for that new method. The default

method solves this problem by supplying an implementation that will be used if no other

implementation is explicitly provided. Thus, the addition of a default method will not cause

preexisting code to break.

Another motivation for the default method was the desire to specify methods in an interface

that are, essentially, optional, depending on how the interface is used. For example, an

interface might define a group of methods that act on a sequence of elements. One of these

methods might be called remove(), and its purpose is to remove an element from the

sequence. However, if the interface is intended to support both modifiable and

nonmodifiable sequences, then remove() is essentially optional because it won’t be used

by nonmodifiable sequences. In the past, a class that implemented a nonmodifiable

sequence would have had to define an empty implementation of remove(), even though it

was not needed. Today, a default implementation for remove() can be specified in the

interface that does nothing (or throws an exception). Providing this default prevents a class

used for nonmodifiable sequences from having to define its own, placeholder version of

remove(). Thus, by providing a default, the interface makes the implementation of

remove() by a class optional.

It is important to point out that the addition of default methods does not change a key aspect

of interface: its inability to maintain state information. An interface still cannot have

instance variables, for example. Thus, the defining difference between an interface and a

class is that a class can maintain state information, but an interface cannot. Furthermore, it

is still not possible to create an instance of an interface by itself. It must be implemented

by a class. Therefore, even though, beginning with JDK 8, an interface can define default

methods, the interface must still be implemented by a class if an instance is to be created.

One last point: As a general rule, default methods constitute a special-purpose feature.

Interfaces that you create will still be used primarily to specify what and not how. However,

the inclusion of the default method gives you added flexibility.

90

4.6.5 Default Method Fundamentals

An interface default method is defined similar to the way a method is defined by a class.

The primary difference is that the declaration is preceded by the keyword default. For

example, consider this simple interface:

public interface MyIF {

// This is a "normal" interface method declaration.

// It does NOT define a default implementation.

int getNumber();

// This is a default method. Notice that it provides

// a default implementation.

default String getString() {

return "Default String";

}

}

MyIF declares two methods. The first, getNumber(), is a standard interface method

declaration. It defines no implementation whatsoever. The second method is getString(),

and it does include a default implementation. In this case, it simply returns the string

"Default String". Pay special attention to the way getString() is declared. Its declaration

is preceded by the default modifier. This syntax can be generalized. To define a default

method, precede its declaration with default.

Because getString() includes a default implementation, it is not necessary for an

implementing class to override it. In other words, if an implementing class does not provide

its own implementation, the default is used. For example, the MyIFImp class shown next

is perfectly valid:

// Implement MyIF.

class MyIFImp implements MyIF {

// Only getNumber() defined by MyIF needs to be implemented.

// getString() can be allowed to default.

public int getNumber() {

return 100;

}

}

91

The following code creates an instance of MyIFImp and uses it to call both getNumber(

) and getString().

// Use the default method.

class DefaultMethodDemo {

public static void main(String args[]) {

MyIFImp obj = new MyIFImp();

// Can call getNumber(), because it is explicitly

// implemented by MyIFImp:

System.out.println(obj.getNumber());

// Can also call getString(), because of default

// implementation:

System.out.println(obj.getString());

}

}

The output is shown here:

100

Default String

As you can see, the default implementation of getString() was automatically used. It was

not necessary for MyIFImp to define it. Thus, for getString(), implementation by a class

is optional. (Of course, its implementation by a class will be required if the class uses

getString() for some purpose beyond that supported by its default.)

It is both possible and common for an implementing class to define its own implementation

of a default method. For example, MyIFImp2 overrides getString():

class MyIFImp2 implements MyIF {

// Here, implementations for both getNumber() and getString() are provided.

public int getNumber() {

return 100;

}

public String getString() {

return "This is a different string.";

}

}

92

Now, when getString() is called, a different string is returned.

4.6.6 Multiple Inheritance Issues

As explained earlier , Java does not support the multiple inheritance of classes. Now that

an interface can include default methods, you might be wondering if an interface can

provide a way around this restriction. The answer is, essentially, no. Recall that there is still

a key difference between a class and an interface: a class can maintain state information

(especially through the use of instance variables), but an interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would normally

associate with the concept of multiple inheritance. For example, you might have a class that

implements two interfaces. If each of these interfaces provides default methods, then some

behavior is inherited from both. Thus, to a limited extent, default methods do support

multiple inheritance of behavior. As you might guess, in such a situation, it is possible that

a name conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented by a class

called MyClass. What happens if both Alpha and Beta provide a method called reset()

for which both declare a default implementation? Is the version by Alpha or the version by

Beta used by MyClass? Or, consider a situation in which Beta extends Alpha. Which

version of the default method is used? Or, what if MyClass provides its own

implementation of the method? To handle these and other similar types of situations, Java

defines a set of rules that resolves such conflicts.

First, in all cases, a class implementation takes priority over an interface default

implementation. Thus, if MyClass provides an override of the reset() default method,

MyClass’ version is used. This is the case even if MyClass implements both Alpha and

Beta. In this case, both defaults are overridden by MyClass’ implementation.

Second, in cases in which a class implements two interfaces that both have the same default

method, but the class does not override that method, then an error will result. Continuing

with the example, if MyClass implements both Alpha and Beta, but does not override

reset(), then an error will occur.

In cases in which one interface inherits another, with both defining a common default

method, the inheriting interface’s version of the method takes precedence. Therefore,

continuing the example, if Beta extends Alpha, then Beta’s version of reset() will be used.

It is possible to explicitly refer to a default implementation in an inherited interface by

using a new form of super. Its general form is shown here:

93

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this statement:

Alpha.super.reset();

4.6.7 Use static Methods in an Interface

JDK 8 added another new capability to interface: the ability to define one or more static

methods. Like static methods in a class, a static method defined by an interface can be

called independently of any object. Thus, no implementation of the interface is necessary,

and no instance of the interface is required, in order to call a static method. Instead, a static

method is called by specifying the interface name, followed by a period, followed by the

method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.

The following shows an example of a static method in an interface by adding one to MyIF,

shown in the previous section. The static method is getDefaultNumber(). It returns zero.

public interface MyIF {

// This is a "normal" interface method declaration.

// It does NOT define a default implementation.

int getNumber();

// This is a default method. Notice that it provides

// a default implementation.

default String getString() {

return "Default String";

}

// This is a static interface method.

static int getDefaultNumber() {

return 0;

}

}

The getDefaultNumber() method can be called, as shown here:

int defNum = MyIF.getDefaultNumber();

As mentioned, no implementation or instance of MyIF is required to call

getDefaultNumber() because it is static.

94

One last point: static interface methods are not inherited by either an implementing class

or a subinterface.

Abstraction through Abstract Classes

4.7 Abstraction through Abstract Classes

There are situations in which you will want to define a superclass that declares the structure

of a given abstraction without providing a complete implementation of every method. That

is, sometimes you will want to create a superclass that only defines a generalized form that

will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such

a class determines the nature of the methods that the subclasses must implement. One way

this situation can occur is when a superclass is unable to create a meaningful

implementation for a method. This is the case with the class Figure used in the preceding

example. The definition of area() is simply a placeholder. It will not compute and display

the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a method to

have no meaningful definition in the context of its superclass. You can handle this situation

two ways. One way, as shown in the previous example, is to simply have it report a warning

message. While this approach can be useful in certain situations—such as debugging—it is

not usually appropriate. You may have methods that must be overridden by the subclass in

order for the subclass to have any meaning. Consider the class Triangle. It has no meaning

if area() is not defined. In this case, you want some way to ensure that a subclass does,

indeed, override all necessary methods. Java’s solution to this problem is the abstract

method.

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

95

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Notice that no objects of class A are declared in the program. As mentioned, it is not

possible to instantiate an abstract class. One other point: class A implements a concrete

method called callmetoo(). This is perfectly acceptable. Abstract classes can include as

much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used tocreate

object references, because Java’s approach to run-time polymorphism is implemented

through the use of superclass references. Thus, it must be possible to create a reference to

an abstract class so that it can be used to point to a subclass object. You will see this feature

put to use in the next example.

Using an abstract class, you can improve the Figure class shown earlier. Since there is no

meaningful concept of area for an undefined two-dimensional figure, the following version

of the program declares area() as abstract inside Figure. This, of course, means that all

classes derived from Figure must override area().

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

96

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas {

public static void main(String args[]) {

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

97

figref = t;

System.out.println("Area is " + figref.area());

}

}

As the comment inside main() indicates, it is no longer possible to declare objects of type

Figure, since it is now abstract. And, all subclasses of Figure must override area(). To

prove this to yourself, try creating a subclass that does not override area(). You will receive

a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference

variable of type Figure. The variable figref is declared as a reference to Figure, which

means that it can be used to refer to an object of any class derived from Figure. As

explained, it is through superclass reference variables that overridden methods are resolved

at run time.

4.7.1 Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a named

constant. This use was described in the preceding chapter. The other two uses of final apply

to inheritance. Both are examined here.

4.7.1.1 Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times when

you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot

be overridden. The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

98

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do

so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The

compiler is free to inline calls to them because it “knows” they will not be overridden by a

subclass. When a small final method is called, often the Java compiler can copy the

bytecode for the subroutine directly inline with the compiled code of the calling method,

thus eliminating the costly overhead associated with a method call. Inlining is an option

only with final methods. Normally, Java resolves calls to methods dynamically, at run time.

This is called late binding. However, since final methods cannot be overridden, a call to

one can be resolved at compile time. This is called early binding.

4.7.1.2 Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the

class declaration with final. Declaring a class as final implicitly declares all of its methods

as final, too. As you might expect, it is illegal to declare a class as both abstract and final

since an abstract class is incomplete by itself and relies upon its subclasses to provide

complete implementations.

Here is an example of a final class:

final class A {

//...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

//...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

4.8 Polymorphism

Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class

99

object.Any Java object that can pass more than one IS-A test is considered to be

polymorphic. In Java, all Java objects are polymorphic since any object will pass the IS-A

test for their own type and for the class Object.

It is important to know that the only possible way to access an object is through a reference

variable. A reference variable can be of only one type. Once declared, the type of a

reference variable cannot be changed. The reference variable can be reassigned to other

objects provided that it is not declared final. The type of the reference variable would

determine the methods that it can invoke on the object. A reference variable can refer to

any object of its declared type or any subtype of its declared type. A reference variable can

be declared as a class or interface type.

Example

public interface Vegetarian{}

public class Animal{}

public class Deer extends Animal implements Vegetarian{}

Now, the Deer class is considered to be polymorphic since this has multiple inheritance.

Following are true for the above examples −

A Deer IS-A Animal

A Deer IS-A Vegetarian

A Deer IS-A Deer

A Deer IS-A Object

When we apply the reference variable facts to a Deer object reference, the following

declarations are legal −

Example

Deer d = new Deer();

Animal a = d;

Vegetarian v = d;

Object o = d;

All the reference variables d, a, v, o refer to the same Deer object in the heap.

100

4.8.1 Virtual Methods

In this section, I will show you how the behavior of overridden methods in Java allows you

to take advantage of polymorphism when designing your classes.

We already have discussed method overriding, where a child class can override a method

in its parent. An overridden method is essentially hidden in the parent class, and is not

invoked unless the child class uses the super keyword within the overriding method.

Example

/* File name : Employee.java */

public class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public void mailCheck() {

 System.out.println("Mailing a check to " + this.name + " " + this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

101

 public String getAddress() {

 return address;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

 public int getNumber() {

 return number;

 }

}

Now suppose we extend Employee class as follows −

/* File name : Salary.java */

public class Salary extends Employee {

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double salary) {

 super(name, address, number);

 setSalary(salary);

 }

 public void mailCheck() {

 System.out.println("Within mailCheck of Salary class ");

 System.out.println("Mailing check to " + getName()

 + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

102

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary/52;

 }

}

Now, you study the following program carefully and try to determine its output −

/* File name : VirtualDemo.java */

public class VirtualDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3, 3600.00);

 Employee e = new Salary("John Adams", "Boston, MA", 2, 2400.00);

 System.out.println("Call mailCheck using Salary reference --");

 s.mailCheck();

 System.out.println("\n Call mailCheck using Employee reference--");

 e.mailCheck();

 }

}

This will produce the following result −

Output

Constructing an Employee

Constructing an Employee

Call mailCheck using Salary reference --

Within mailCheck of Salary class

Mailing check to Mohd Mohtashim with salary 3600.0

103

Call mailCheck using Employee reference--

Within mailCheck of Salary class

Mailing check to John Adams with salary 2400.0

Here, we instantiate two Salary objects. One using a Salary reference s, and the other using

an Employee reference e.

While invoking s.mailCheck(), the compiler sees mailCheck() in the Salary class at compile

time, and the JVM invokes mailCheck() in the Salary class at run time.

mailCheck() on e is quite different because e is an Employee reference. When the compiler

sees e.mailCheck(), the compiler sees the mailCheck() method in the Employee class.

Here, at compile time, the compiler used mailCheck() in Employee to validate this

statement. At run time, however, the JVM invokes mailCheck() in the Salary class.

This behavior is referred to as virtual method invocation, and these methods are referred to

as virtual methods. An overridden method is invoked at run time, no matter what data type

the reference is that was used in the source code at compile time.

4.9 Check your progress

1. A class that is derived from another class is called a………………………….

2. When a subclass is derived from its parent class then this mechanism is known

as…………………………….

3. When a subclass is derived from a derived class then this mechanism is known as

the………………………….

4. When two or more classes inherits a single class, it is known as …………………….

5. An …………….is a named collection of method definitions (without

implementations) and it can also declare constants.

6. The………………. access specifier indicates that the interface can be used by any

class in any package.

7. Java does not support the ……………………inheritance of classes.

8. ……………………is the ability of an object to take on many forms.

9. Declaring a class as final implicitly declares all of its methods as………………….

10. It is illegal to declare a class as both ………………….and final.

104

4.10 Summary

Inheritance can be defined as the process where one object acquires the properties of

another. Reusability is one of the important feature of object-oriented programming and it

can be achieved through inheritance. A class that is derived from another class is called a

subclass (also a derived class, extended class, or child class). A subclass inherits all the

members (fields, methods, and nested classes) from its superclass. The class from which

the subclass is derived is called a superclass (also a base class or a parent class).

When a subclass is derived from its parent class then this mechanism is known as single

inheritance. In case of single inheritance there is only a sub class and its parent class. It is

also called one level inheritance.

It is the enhancement of the concept of inheritance. When a subclass is derived from a

derived class then this mechanism is known as the multilevel inheritance. The derived class

is called the subclass or child class for its parent class and this parent class works as the

child class for its just above (parent) class. Multilevel inheritance can go up to any number

of level. When two or more classes inherits a single class, it is known as hierarchical

inheritance.

An interface is a collection of methods and variables like a class but it is not a class. An

interface defines a set of methods but does not implement them. Writing an interface is

similar to writing a class still there exists some differences. An interface is a named

collection of method definitions (without implementations). An interface can also declare

constants.

An interface default method is defined similar to the way a method is defined by a class.

The primary difference is that the declaration is preceded by the keyword default.

Java does not support the multiple inheritance of classes. Now that an interface can include

default methods, you might be wondering if an interface can provide a way around this

restriction. The answer is, essentially, no. Recall that there is still a key difference between

a class and an interface: a class can maintain state information (especially through the use

of instance variables), but an interface cannot.

There are situations in which you will want to define a superclass that declares the structure

105

of a given abstraction without providing a complete implementation of every method. That

is, sometimes you will want to create a superclass that only defines a generalized form that

will be shared by all of its subclasses, leaving it to each subclass to fill in the details.

While method overriding is one of Java’s most powerful features, there will be times when

you will want to prevent it from occurring. To disallow a method from being overridden,

specify final as a modifier at the start of its declaration. Methods declared as final cannot

be overridden.

Polymorphism is the ability of an object to take on many forms. The most common use of

polymorphism in OOP occurs when a parent class reference is used to refer to a child class

object.

4.11 Keywords

extend- To define a new class as an extension of an existing class, we simply use an extend.

one level inheritance- In case of single inheritance there is only a sub class and its parent

class. It is also called one level inheritance.

Super- superclass is used for parent class.

Sub- Subclass is used for Derived class.

hierarchical- When two or more classes inherits a single class, it is known as hierarchical

inheritance.

Multilevel- When a subclass is derived from a derived class then this mechanism is known

as the multilevel inheritance.

Interface- this keyword used for creating interfaces.

Implement- When a class implements an interface, we use this keyword.

106

Final- The keyword final has three uses. First, it can be used to create the equivalent of a

named constant. The other two uses of final apply to inheritance.

4.12 Self-Assessment Test

Q.1. What do you understand by Inheritance? What are different types of Inheritance in

Java?

Q.2. Explain and describe single inheritance with suitable example.

Q.3. Differentiate between multilevel and hierarchical inheritance.

Q.4. How is Interface differ from inheritance? Discuss.

Q.5. Briefly discuss interface implementation.

Q.6. Explain the use of static methods in interface.

Q.7. Describe the concept of final keyword in inheritance.

Q.8.What do you understand with polymorphism.? Give suitable example.

4.13 Answers to check your progress

1. subclass

2. single inheritance

3. multilevel inheritance

4. hierarchical inheritance.

5. interface

6. public

7. multiple

8. Polymorphism

9. final

10. abstract

107

4.14 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

108

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 5

Multithreaded Programming

STRUCTURE

5.0 Learning Objective

5.1 Introduction

5.2 The Java Thread Model

 5.2.1 Thread Priorities

 5.2.2 Synchronization

 5.2.3 The Main Thread

5.3 Creating a Thread

 5.3.1 Implementing Runnable

 5.3.2 Extending Thread

5.4 Creating Multiple Threads

 5.4.1 Thread Priorities

 5.4.2 Synchronization

 5.4.2.1 Using Synchronized Methods

 5.4.2.2 The synchronized Statement

 5.4.3 Interthread Communication

 5.4.4 Deadlock

5.5 Stopping and Blocking a Thread

5.6 Life Cycle of a Thread

5.7 Check Your Progress

5.8 Summary

5.9 Keywords

5.10 Self-Assessment Test

5.11 Answers to check your progress

5.12 References / Suggested Readings

109

5.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• learn about the concept of multithreaded programming.

• describe the life cycle of thread.

• learn about deadlock occurrence.

• Learn about Synchronization concept in java thread model and multiple threads

case.

• Learn about Interthread communication.

5.1 INTRODUCTION

Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is called

a thread, and each thread defines a separate path of execution. Thus, multithreading is a

specialized form of multitasking.

You are almost certainly acquainted with multitasking because it is supported by virtually

all modern operating systems. However, there are two distinct types of multitasking:

process-based and thread-based. It is important to understand the difference between the

two. For many readers, process-based multitasking is the more familiar form. A process is,

in essence, a program that is executing. Thus, process-based multitasking is the feature that

allows your computer to run two or more programs concurrently. For example, process

based multitasking enables you to run the Java compiler at the same time that you are using

a text editor or visiting a web site. In process-based multitasking, a program is the smallest

unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable

code. This means that a single program can perform two or more tasks simultaneously. For

instance, a text editor can format text at the same time that it is printing, as long as these

two actions are being performed by two separate threads. Thus, process-based multitasking

deals with the “big picture,” and thread-based multitasking handles the details. Multitasking

threads require less overhead than multitasking processes. Processes are heavyweight tasks

110

that require their own separate address spaces. Interprocess communication is expensive

and limited. Context switching from one process to another is also costly. Threads, on the

other hand, are lighter weight. They share the same address space and cooperatively share

the same heavyweight process. Interthread communication is inexpensive, and context

switching from one thread to the next is lower in cost. While Java programs make use of

process-based multitasking environments, process-based multitasking is not under Java’s

control. However, multithreaded multitasking is.

Multithreading enables you to write efficient programs that make maximum use of the

processing power available in the system. One important way multithreading achieves this

is by keeping idle time to a minimum. This is especially important for the interactive,

networked environment in which Java operates because idle time is common. For example,

the transmission rate of data over a network is much slower than the rate at which the

computer can process it. Even local file system resources are read and written at a much

slower pace than they can be processed by the CPU. And, of course, user input is much

slower than the computer. In a single-threaded environment, your program has to wait for

each of these tasks to finish before it can proceed to the next one—even though most of the

time the program is idle, waiting for input. Multithreading helps you reduce this idle time

because another thread can run when one is waiting.

If you have programmed for operating systems such as Windows, then you are already

familiar with multithreaded programming. However, the fact that Java manages threads

makes multithreading especially convenient because many of the details are handled for

you.

5.2 The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries

are designed with multithreading in mind. In fact, Java uses threads to enable the entire

environment to be asynchronous. This helps reduce inefficiency by preventing the waste

of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its counterpart.

Single-threaded systems use an approach called an event loop with polling. In this model,

a single thread of control runs in an infinite loop, polling a single event queue to decide

what to do next. Once this polling mechanism returns with, say, a signal that a network file

111

is ready to be read, then the event loop dispatches control to the appropriate event handler.

Until this event handler returns, nothing else can happen in the program. This wastes CPU

time. It can also result in one part of a program dominating the system and preventing any

other events from being processed. In general, in a single-threaded environment, when a

thread blocks (that is, suspends execution) because it is waiting for some resource, the entire

program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is eliminated.

One thread can pause without stopping other parts of your program. For example, the idle

time created when a thread reads data from a network or waits for user input can be utilized

elsewhere. Multithreading allows animation loops to sleep for a second between each frame

without causing the whole system to pause. When a thread blocks in a Java program, only

the single thread that is blocked pauses. All other threads continue to run.

As most readers know, over the past few years, multi-core systems have become

commonplace. Of course, single-core systems are still in widespread use. It is important to

understand that Java’s multithreading features work in both types of systems. In a

singlecore system, concurrently executing threads share the CPU, with each thread

receiving a slice of CPU time. Therefore, in a single-core system, two or more threads do

not actually run at the same time, but idle CPU time is utilized. However, in multi-core

systems, it is possible for two or more threads to actually execute simultaneously. In many

cases, this can further improve program efficiency and increase the speed of certain

operations.

Threads exist in several states. Here is a general description. A thread can be running. It

can be ready to run as soon as it gets CPU time. A running thread can be suspended, which

temporarily halts its activity. A suspended thread can then be resumed, allowing it to pick

up where it left off. A thread can be blocked when waiting for a resource. At any time, a

thread can be terminated, which halts its execution immediately. Once terminated, a thread

cannot be resumed.

5.2.1 Thread Priorities

Java assigns to each thread a priority that determines how that thread should be treated with

respect to the others. Thread priorities are integers that specify the relative priority of one

thread to another. As an absolute value, a priority is meaningless; a higher-priority thread

doesn’t run any faster than a lower-priority thread if it is the only thread running. Instead,

112

a thread’s priority is used to decide when to switch from one running thread to the next.

This is called a context switch. The rules that determine when a context switch takes place

are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,

or blocking on pending I/O. In this scenario, all other threads are examined, and the highest-

priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread

that does not yield the processor is simply preempted—no matter what it is doing— by a

higher-priority thread. Basically, as soon as a higher-priority thread wants to run, it does.

This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the

situation is a bit complicated. For operating systems such as Windows, threads of equal

priority are time-sliced automatically in round-robin fashion. For other types of operating

systems, threads of equal priority must voluntarily yield control to their peers. If they don’t,

the other threads will not run.

5.2.2 Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there must

be a way for you to enforce synchronicity when you need it. For example, if you want two

threads to communicate and share a complicated data structure, such as a linked list, you

need some way to ensure that they don’t conflict with each other. That is, you must prevent

one thread from writing data while another thread is in the middle of reading it. For this

purpose, Java implements an elegant twist on an age-old model of interprocess

synchronization: the monitor. The monitor is a control mechanism first defined by C.A.R.

Hoare. You can think of a monitor as a very small box that can hold only one thread. Once

a thread enters a monitor, all other threads must wait until that thread exits the monitor. In

this way, a monitor can be used to protect a shared asset from being manipulated by more

than one thread at a time.

In Java, there is no class “Monitor”; instead, each object has its own implicit monitor that

is automatically entered when one of the object’s synchronized methods is called. Once a

thread is inside a synchronized method, no other thread can call any other synchronized

method on the same object. This enables you to write very clear and concise multithreaded

code, because synchronization support is built into the language.

113

5.2.3 The Main Thread

When a Java program starts up, one thread begins running immediately. This is usually

called the main thread of your program, because it is the one that is executed when your

program begins. The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various

shutdown actions.

Although the main thread is created automatically when your program is started, it can be

controlled through a Thread object. To do so, you must obtain a reference to it by calling

the method currentThread(), which is a public static member of Thread. Its general

form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a

reference to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

114

}

In this program, a reference to the current thread (the main thread, in this case) is obtained

by calling currentThread(), and this reference is stored in the local variable t. Next, the

program displays information about the thread. The program then calls setName() to

change the internal name of the thread. Information about the thread is then redisplayed.

Next, a loop counts down from five, pausing one second between each line. The pause is

accomplished by the sleep() method. The argument to sleep() specifies the delay period

in milliseconds. Notice the try/catch block around this loop. The sleep() method in

Thread might throw an InterruptedException. This would happen if some other thread

wanted to interrupt this sleeping one. This example just prints a message if it gets

interrupted. In a real program, you would need to handle this differently.

Here is the output generated by this program:

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

Notice the output produced when t is used as an argument to println(). This displays, in

order: the name of the thread, its priority, and the name of its group. By default, the name

of the main thread is main. Its priority is 5, which is the default value, and main is also the

name of the group of threads to which this thread belongs. A thread group is a data structure

that controls the state of a collection of threads as a whole. After the name of the thread is

changed, t is again output. This time, the new name of the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the program.

The sleep() method causes the thread from which it is called to suspend execution for the

specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw

an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the

period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

115

This second form is useful only in environments that allow timing periods as short as

nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().

You can obtain the name of a thread by calling getName() (but note that this is not shown

in the program). These methods are members of the Thread class and are declared like

this:

final void setName(String threadName)

final String getName()

Here, threadName specifies the name of the thread.

5.3 Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.

Java defines two ways in which this can be accomplished:

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

The following two sections look at each method, in turn.

5.3.1. Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable

interface. Runnable abstracts a unit of executable code. You can construct a thread on any

object that implements Runnable. To implement Runnable, a class need only implement

a single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to

understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can. The only difference is that run() establishes the entry point for

another, concurrent thread of execution within your program. This thread will end when

run() returns.

After you create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will

use is shown here:

Thread(Runnable threadOb, String threadName)

116

In this constructor, threadOb is an instance of a class that implements the Runnable

interface. This defines where execution of the thread will begin. The name of the new thread

is specified by threadName.

After the new thread is created, it will not start running until you call its start() method,

which is declared within Thread. In essence, start() executes a call to run().The start()

method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

117

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Inside NewThread’s constructor, a new Thread object is created by the following

statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run()

method on this object. Next, start() is called, which starts the thread of execution

beginning at the run() method. This causes the child thread’s for loop to begin. After

calling start(), NewThread’s constructor returns to main(). When the main thread

resumes, it enters its for loop. Both threads continue running, sharing the CPU in singlecore

systems, until their loops finish. The output produced by this program is as follows.

(Your output may vary based upon the specific execution environment.)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

118

As mentioned earlier, in a multithreaded program, often the main thread must be the last

thread to finish running. In fact, for some older JVMs, if the main thread finishes before a

child thread has completed, then the Java run-time system may “hang.” The preceding

program ensures that the main thread finishes last, because the main thread sleeps for 1,000

milliseconds between iterations, but the child thread sleeps for only 500 milliseconds. This

causes the child thread to terminate earlier than the main thread. Shortly, you will see a

better way to wait for a thread to finish.

5.3.2 Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which

is the entry point for the new thread. It must also call start() to begin execution of the new

thread. Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

119

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

This program generates the same output as the preceding version. As you can see, the child

thread is created by instantiating an object of NewThread, which is derived from Thread.

5.4 Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.

However, your program can spawn as many threads as it needs. For example, the following

program creates three child threads:

// Create multiple threads.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

120

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + "Interrupted");

}

System.out.println(name + " exiting.");

}

}

class MultiThreadDemo {

public static void main(String args[]) {

new NewThread("One"); // start threads

new NewThread("Two");

new NewThread("Three");

try {

// wait for other threads to end

Thread.sleep(10000);

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

Sample output from this program is shown here. (Your output may vary based upon the

specific execution environment.)

New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]

New thread: Thread[Three,5,main]

121

One: 5

Two: 5

Three: 5

One: 4

Two: 4

Three: 4

One: 3

Three: 3

Two: 3

One: 2

Three: 2

Two: 2

One: 1

Three: 1

Two: 1

One exiting.

Two exiting.

Three exiting.

Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to

sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures

that it will finish last.

5.4.1 Thread Priorities

Thread priorities are used by the thread scheduler to decide when each thread should be

allowed to run. In theory, over a given period of time, higher-priority threads get more

CPU time than lower-priority threads. In practice, the amount of CPU time that a thread

gets often depends on several factors besides its priority. (For example, how an operating

system implements multitasking can affect the relative availability of CPU time.)

A Higher-priority thread can also preempt a lower-priority one. For instance, when a

lower-priority thread is running and a higher-priority thread resumes (from sleeping or

waiting on I/O, for example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to

122

be careful. Remember, Java is designed to work in a wide range of environments. Some

of those environments implement multitasking fundamentally differently than others. For

safety, threads that share the same priority should yield control once in a while. This

ensures that all threads have a chance to run under a nonpreemptive operating system. In

practice, even in nonpreemptive environments, most threads still get a chance to run,

because most threads inevitably encounter some blocking situation, such as waiting for

I/O. When this happens, the blocked thread is suspended and other threads can run. But, if

you want smooth multithreaded execution, you are better off not relying on this. Also,

some types of tasks are CPU-intensive. Such threads dominate the CPU. For these types

of threads, you want to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level

must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these

values are 1 and 10, respectively. To return a thread to default priority, specify

NORM_PRIORITY, which is

currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of

Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to

scheduling. Most of the inconsistencies arise when you have threads that are relying on

preemptive behavior, instead of cooperatively giving up CPU time. The safest way to

obtain

predictable, cross-platform behavior with Java is to use threads that voluntarily give up

control of the CPU.

5.4.2 Synchronization

When two or more threads need access to a shared resource, they need some way to ensure

that the resource will be used by only one thread at a time. The process by which this is

achieved is called synchronization. As you will see, Java provides unique, language-level

support for it.

123

Key to synchronization is the concept of the monitor. A monitor is an object that is used as

a mutually exclusive lock. Only one thread can own a monitor at a given time. When a

thread acquires a lock, it is said to have entered the monitor. All other threads attempting

to enter the locked monitor will be suspended until the first thread exits the monitor. These

other threads are said to be waiting for the monitor. A thread that owns a monitor can reenter

the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the

synchronized keyword, and both are examined here.

5.4.2.1 Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor

associated with them. To enter an object’s monitor, just call a method that has been

modified with the synchronized keyword. While a thread is inside a synchronized method,

all other threads that try to call it (or any other synchronized method) on the same instance

have to wait. To exit the monitor and relinquish control of the object to the next waiting

thread, the owner of the monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does

not use it—but should. The following program has three simple classes. The first one,

Callme, has a single method named call(). The call() method takes a String parameter

called msg. This method tries to print the msg string inside of square brackets. The

interesting thing to notice is that after call() prints the opening bracket and the msg string,

it calls Thread.sleep(1000), which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme

class and a String, which are stored in target and msg, respectively. The constructor also

creates a new thread that will call this object’s run() method. The thread is started

immediately. The run() method of Caller calls the call() method on the target instance

of Callme, passing in the msg string. Finally, the Synch class starts by creating a single

instance of Callme, and three instances of Caller, each with a unique message string. The

same instance of Callme is passed to each Caller.

5.4.2.2 The synchronized Statement

While creating synchronized methods within classes that you create is an easy and

effective means of achieving synchronization, it will not work in all cases. To understand

124

why, consider the following. Imagine that you want to synchronize access to objects of a

class that was not designed for multithreaded access. That is, the class does not use

synchronized methods. Further, this class was not created by you, but by a third party, and

you do not have access to the source code. Thus, you can’t add synchronized to the

appropriate methods within the class. How can access to an object of this class be

synchronized? Fortunately, the solution to this problem is quite easy: You simply put calls

to the methods defined by this class inside a synchronized block.

This is the general form of the synchronized statement:

synchronized(objRef) {

// statements to be synchronized

}

Here, objRef is a reference to the object being synchronized. A synchronized block ensures

that a call to a synchronized method that is a member of objRef’s class occurs only after

the current thread has successfully entered objRef’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within

the run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

125

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized

statement is used inside Caller’s run() method. This causes the same correct output as the

preceding example, because each thread waits for the prior one to finish before proceeding.

126

5.4.3 Interthread Communication

The preceding examples unconditionally blocked other threads from asynchronous access

to certain methods. This use of the implicit monitors in Java objects is powerful, but you

can achieve a more subtle level of control through interprocess communication. As you

will see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your

tasks into discrete, logical units. Threads also provide a secondary benefit: they do away

with polling. Polling is usually implemented by a loop that is used to check some condition

repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.

For example, consider the classic queuing problem, where one thread is producing some

data and another is consuming it. To make the problem more interesting, suppose that the

producer has to wait until the consumer is finished before it generates more data. In a

polling system, the consumer would waste many CPU cycles while it waited for the

producer to produce. Once the producer was finished, it would start polling, wasting more

CPU cycles waiting for the consumer to finish, and so on. Clearly, this situation is

undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via the

wait(), notify(), and notifyAll() methods. These methods are implemented as final

methods in Object, so all classes have them. All three methods can be called only from

within a synchronized context. Although conceptually advanced from a computer science

perspective, the rules for using these methods are actually quite simple:

• wait() tells the calling thread to give up the monitor and go to sleep until some other

thread enters the same monitor and calls notify() or notifyAll().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of the

threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException

final void notify()

final void notify All()

Additional forms of wait() exist that allow you to specify a period of time to wait. Before

working through an example that illustrates interthread communication, an important point

needs to be made. Although wait() normally waits until notify() or notifyAll() is called,

127

there is a possibility that in very rare cases the waiting thread could be awakened due to a

spurious wakeup. In this case, a waiting thread resumes without notify() or notifyAll()

having been called. (In essence, the thread resumes for no apparent reason.)

Because of this remote possibility, Oracle recommends that calls to wait() should take

place within a loop that checks the condition on which the thread is waiting. The following

example shows this technique.

Let’s now work through an example that uses wait() and notify(). To begin, consider the

following sample program that incorrectly implements a simple form of the producer/

consumer problem. It consists of four classes: Q, the queue that you’re trying to

synchronize; Producer, the threaded object that is producing queue entries; Consumer,

the threaded object that is consuming queue entries; and PC, the tiny class that creates the

single Q, Producer, and Consumer.

// An incorrect implementation of a producer and consumer.

class Q {

int n;

synchronized int get() {

System.out.println("Got: " + n);

return n;

}

synchronized void put(int n) {

this.n = n;

System.out.println("Put: " + n);

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

128

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PC {

public static void main(String args[]) {

Q q = new Q();

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Although the put() and get() methods on Q are synchronized, nothing stops the producer

from overrunning the consumer, nor will anything stop the consumer from consuming the

same queue value twice. Thus, you get the erroneous output shown here (the exact output

will vary with processor speed and task load):

Put: 1

Got: 1

Got: 1

Got: 1

Got: 1

Got: 1

Put: 2

129

Put: 3

Put: 4

Put: 5

Put: 6

Put: 7

Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five

times in a row. Then, the producer resumed and produced 2 through 7 without letting

the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in

both directions, as shown here:

// A correct implementation of a producer and consumer.

class Q {

int n;

boolean valueSet = false;

synchronized int get() {

while(!valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

System.out.println("Got: " + n);

valueSet = false;

notify();

return n;

}

synchronized void put(int n) {

while(valueSet)

try {

wait();

} catch(InterruptedException e) {

System.out.println("InterruptedException caught");

}

130

this.n = n;

valueSet = true;

System.out.println("Put: " + n);

notify();

}

}

class Producer implements Runnable {

Q q;

Producer(Q q) {

this.q = q;

new Thread(this, "Producer").start();

}

public void run() {

int i = 0;

while(true) {

q.put(i++);

}

}

}

class Consumer implements Runnable {

Q q;

Consumer(Q q) {

this.q = q;

new Thread(this, "Consumer").start();

}

public void run() {

while(true) {

q.get();

}

}

}

class PCFixed {

public static void main(String args[]) {

Q q = new Q();

131

new Producer(q);

new Consumer(q);

System.out.println("Press Control-C to stop.");

}

}

Inside get(), wait() is called. This causes its execution to suspend until Producer notifies

you that some data is ready. When this happens, execution inside get() resumes. After the

data has been obtained, get() calls notify(). This tells Producer that it is okay to put more

data in the queue. Inside put(), wait() suspends execution until Consumer has removed

the item from the queue. When execution resumes, the next item of data is put in the queue,

and notify() is called. This tells Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

Put: 1

Got: 1

Put: 2

Got: 2

Put: 3

Got: 3

Put: 4

Got: 4

Put: 5

Got: 5

5.4.4 Deadlock

A special type of error that you need to avoid that relates specifically to multitasking is

deadlock, which occurs when two threads have a circular dependency on a pair of

synchronized objects.

For example, suppose one thread enters the monitor on object X and another thread enters

the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it

will block as expected. However, if the thread in Y, in turn, tries to call any synchronized

method on X, the thread waits forever, because to access X, it would have to release its

own lock on Y so that the first thread could complete. Deadlock is a difficult error to debug

for two reasons:

132

• In general, it occurs only rarely, when the two threads time-slice in just the right way.

• It may involve more than two threads and two synchronized objects. (That is, deadlock

can occur through a more convoluted sequence of events than just described.)

To understand deadlock fully, it is useful to see it in action. The next example creates two

classes, A and B, with methods foo() and bar(), respectively, which pause briefly before

trying to call a method in the other class. The main class, named Deadlock, creates an A

and a B instance, and then starts a second thread to set up the deadlock condition. The foo(

) and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.

class A {

synchronized void foo(B b) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered A.foo");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("A Interrupted");

}

System.out.println(name + " trying to call B.last()");

b.last();

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class B {

synchronized void bar(A a) {

String name = Thread.currentThread().getName();

System.out.println(name + " entered B.bar");

try {

Thread.sleep(1000);

} catch(Exception e) {

System.out.println("B Interrupted");

133

}

System.out.println(name + " trying to call A.last()");

a.last();

}

synchronized void last() {

System.out.println("Inside A.last");

}

}

class Deadlock implements Runnable {

A a = new A();

B b = new B();

Deadlock() {

Thread.currentThread().setName("MainThread");

Thread t = new Thread(this, "RacingThread");

t.start();

a.foo(b); // get lock on a in this thread.

System.out.println("Back in main thread");

}

public void run() {

b.bar(a); // get lock on b in other thread.

System.out.println("Back in other thread");

}

public static void main(String args[]) {

new Deadlock();

}

}

When you run this program, you will see the output shown here:

MainThread entered A.foo

RacingThread entered B.bar

MainThread trying to call B.last()

RacingThread trying to call A.last()

Because the program has deadlocked, you need to press ctrl-c to end the program. You can

see a full thread and monitor cache dump by pressing ctrl-break on a PC. You will see that

RacingThread owns the monitor on b, while it is waiting for the monitor on a. At the same

134

time, MainThread owns a and is waiting to get b. This program will never complete. As

this example illustrates, if your multithreaded program locks up occasionally, deadlock is

one of the first conditions that you should check for.

5.5 Stopping and Blocking a Thread

Sometimes, suspending execution of a thread is useful. For example, a separate thread can

be used to display the time of day. If the user doesn’t want a clock, then its thread can be

suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,

restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of Java,

such as Java 1.0, and modern versions, beginning with Java 2. Prior to Java 2, a program

used suspend(), resume(), and stop(), which are methods defined by Thread, to pause,

restart, and stop the execution of a thread. Although these methods seem to be a perfectly

reasonable and convenient approach to managing the execution of threads, they must not

be used for new Java programs. Here’s why. The suspend() method of the Thread class

was deprecated by Java 2 several years ago. This was done because suspend() can

sometimes cause serious system failures. Assume that a thread has obtained locks on

critical data structures. If that thread is suspended at that point, those locks are not

relinquished. Other threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be used

without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done

because this method can sometimes cause serious system failures. Assume that a thread is

writing to a critically important data structure and has completed only part of its changes.

If that thread is stopped at that point, that data structure might be left in a corrupted state.

The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the

corrupted data might be used by another thread that is waiting on the same lock.

Because you can’t now use the suspend(), resume(), or stop() methods to control a

thread, you might be thinking that no way exists to pause, restart, or terminate a thread.

But, fortunately, this is not true. Instead, a thread must be designed so that the run() method

135

periodically checks to determine whether that thread should suspend, resume, or stop its

own execution. Typically, this is accomplished by establishing a flag variable that indicates

the execution state of the thread. As long as this flag is set to “running,” the run() method

must continue to let the thread execute. If this variable is set to “suspend,” the thread must

pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in

which to write such code, but the central theme will be the same for all programs.

The following example illustrates how the wait() and notify() methods that are inherited

from Object can be used to control the execution of a thread. Let us consider its operation.

The NewThread class contains a boolean instance variable named suspendFlag, which is

used to control the execution of the thread. It is initialized to false by the constructor. The

run() method contains a synchronized statement block that checks suspendFlag. If that

variable is true, the wait() method is invoked to suspend the execution of the thread. The

mysuspend() method sets suspendFlag to true. The myresume() method sets

suspendFlag to false and invokes notify() to wake up the thread. Finally, the main()

method has been modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.

class NewThread implements Runnable {

String name; // name of thread

Thread t;

boolean suspendFlag;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

suspendFlag = false;

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 15; i > 0; i--) {

System.out.println(name + ": " + i);

136

Thread.sleep(200);

synchronized(this) {

while(suspendFlag) {

wait();

}

}

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

synchronized void mysuspend() {

suspendFlag = true;

}

synchronized void myresume() {

suspendFlag = false;

notify();

}

}

class SuspendResume {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

try {

Thread.sleep(1000);

ob1.mysuspend();

System.out.println("Suspending thread One");

Thread.sleep(1000);

ob1.myresume();

System.out.println("Resuming thread One");

ob2.mysuspend();

System.out.println("Suspending thread Two");

137

Thread.sleep(1000);

ob2.myresume();

System.out.println("Resuming thread Two");

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");

}

}

When you run the program, you will see the threads suspend and resume. Although this

mechanism isn’t as “clean” as the old way, nevertheless, it is the way required to ensure

that run-time errors don’t occur. It is the approach that must be used for all new code.

5.6 Life Cycle of a Thread

As mentioned earlier in this chapter, a thread can exist in a number of different states. You

can obtain the current state of a thread by calling the getState() method defined by Thread.

It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at

which the call was made. State is an enumeration defined by Thread. Here are the values

that can be returned by getState():

138

Table 5.1. diagrams how the various thread states relate.

Fig. 5.1 Thread states

Given a Thread instance, you can use getState() to obtain the state of a thread. For

example, the following sequence determines if a thread called thrd is in the RUNNABLE

state at the time getState() is called:

Thread.State ts = thrd.getState();

if(ts == Thread.State.RUNNABLE) // ...

139

It is important to understand that a thread’s state may change after the call to getState().

Thus, depending on the circumstances, the state obtained by calling getState() may not

reflect the actual state of the thread only a moment later. For this (and other) reasons,

getState() is not intended to provide a means of synchronizing threads. It’s primarily used

for debugging or for profiling a thread’s run-time characteristics.

5.7 Check Your Progress

1. A …………………….program contains two or more parts that can run concurrently.

2. In a thread-based multitasking environment, the thread is the smallest unit

of………………………………...

3. Single-threaded systems use an approach called an………………………………….

4. A thread can be …………………………..by a higher-priority thread.

5. The way to create a thread is to create a new class that extends ………………………..

6. When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time, this is

called……………………………….

7. ………………………method wakes up a thread that called wait() on the same object.

8. ………………………occurs when two threads have a circular dependency on a pair

of synchronized objects.

9. The thread that has not begun execution, this state of thread is

called…………………...

10. The thread that has completed execution, this state of thread is called

…………………………...

140

5.8 Summary

Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is called

a thread, and each thread defines a separate path of execution. Thus, multithreading is a

specialized form of multitasking.

The value of a multithreaded environment is best understood in contrast to its counterpart.

Single-threaded systems use an approach called an event loop with polling. In this model,

a single thread of control runs in an infinite loop, polling a single event queue to decide

what to do next.

Java assigns to each thread a priority that determines how that thread should be treated with

respect to the others. Thread priorities are integers that specify the relative priority of one

thread to another. Because multithreading introduces an asynchronous behavior to your

programs, there must be a way for you to enforce synchronicity when you need it.

When a Java program starts up, one thread begins running immediately. This is usually

called the main thread of your program, because it is the one that is executed when your

program begins. The main thread is important for two reasons:

• It is the thread from which other “child” threads will be spawned.

• Often, it must be the last thread to finish execution because it performs various

shutdown actions.

You create a thread by instantiating an object of type Thread. Java defines two ways in

which this can be accomplished:

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

A special type of error that you need to avoid that relates specifically to multitasking is

deadlock, which occurs when two threads have a circular dependency on a pair of

synchronized objects. The mechanisms to suspend, stop, and resume threads differ between

a program used suspend(), resume(), and stop(), which are methods defined by Thread to

pause, restart, and stop the execution of a thread.

The different states in a lifecycle of a thread are new, runnable, blocked and terminated and

also a waiting state.

141

5.9 Keywords

Multithreading- It is a specialized form of multitasking.

Interprocess- This communication is expensive and limited.

Blocked- A thread can be blocked when waiting for a resource.

Suspended- A running thread can be suspended, which temporarily halts its activity.

sleep()- method causes the thread from which it is called to suspend execution for the

specified period of milliseconds

Runnable- To create a thread is to create a class that implements the Runnable interface.

Thread- To create a thread is to create a new class that extends Thread.

Deadlock- which occurs when two threads have a circular dependency on a pair of

synchronized objects.

5.10 Self-Assessment Test

Q.1. How will you define thread priorities in case of Java thread model? Explain.

Q.2 How synchronization is important in thread model? Describe.

Q.3 Explain the concept of Main Thread with help of a program.

Q.4 Write down a program to explain the concept of implementing a interface.

Q.5 Write down a program for creating multiple threads.

Q.6 Explain the concept of deadlock.

Q.7 Explain the lifecycle of a thread.

142

5.11 Answers to check your progress

1. multithreaded

2. dispatchable code

3. event loop with polling

4. preempted

5. Thread

6. synchronization

7. notify()

8. Deadlock

9. New State

10. Terminated State

5.12 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

143

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 6

Exception Handling

STRUCTURE

6.0 Learning Objective

6.1 Introduction

6.2 Types of Errors

 6.2.1 Compile-Time Errors

 6.2.2 Run-Time Errors

6.3 Exceptions

6.4 Exceptions Hierarchy

6.5 Syntax of Exception Handling Code

6.6 Multiple Catch Statements

6.7 Using finally Statement

6.8 Throwing Our Own Exceptions

6.9 Check Your Progress

6.10 Summary

6.11 Keywords

6.12 Self-Assessment Test

6.13 Answers to check your progress

6.14 References / Suggested Readings

6.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• learn the concept of exceptions in Java

144

• learn to use the keywords throw, try, catch, and finally in exception handling

• learn about the Throwable class hierarchy

• learn about unchecked and checked exception in Java

• throw exceptions implicitly as well as explicitly

• learn about how to catch exceptions

• learn to handle user-defined exceptions and will be able to create your own exception

6.1 INTRODUCTION

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal

condition that arises in a code sequence at run time. In other words, an exception is a

runtime error. In computer languages that do not support exception handling, errors must

be checked and handled manually—typically through the use of error codes, and so on.

This approach is as cumbersome as it is troublesome. Java’s exception handling avoids

these problems and, in the process, brings run-time error management into the object-

oriented world.

By now, you must have been acquainted with so many concepts of Java programming

language such as data types and variables, operators, control flow statements etc. We have

also presented the concept of classes, objects, methods, constructors, inheritance, various

types of modifiers, arrays, strings, vectors as well as the interfaces and packages. These

concepts will help the learners to write and develop suitable programs. While writing

program there may arise some errors for some mistakes. An error may produce an incorrect

output or may terminate the execution of the program abruptly. It is therefore important to

detect and manage those errors. Java facilitates the management of such situation by

handling exceptions.

In this chapter, we will discuss how exceptions can be handled in Java programming

language. The chapter describes when and how to use exceptions.

6.2 Types of Error

We can define an exception as an event, which occurs during the execution of a program

that disrupts the normal flow of the program’s instructions. The Java programming

language uses exceptions to handle errors and other exceptional events. Exceptions are used

145

in a program to signal that some error or exceptional situation has occurred, and that it does

not make sense to continue the program flow until the exception has been handled.

There are two categories of errors: Compile-time errors and Run-time errors.

6.2.1 Compile-time errors

All syntax errors detected and displayed by the Java compiler are termed as Compile-time

errors. If the compiler detects an error while compiling a program, then the .class file will

not be created. For successful compilation we have to correct the syntax error first. Let us

consider the following example for the demonstration of compile time error:

Program 6.1: Test.java (Program showing Compile-time error)

class Test

{

public static void main(String args[])

{

System.out.println(“KKHSOU”);

System.out.println(“\nAssam”)

}

}

While compiling the above program Test.java, the following message will

be displayed on the screen:

We can see that the statement

System.out.println(“\nAssam”)

has no semicolon at the end. The Java compiler displays where the errors are in the program.

We can then correct the errors in the appropriate line and recompile the program. If there

146

is no other error in the program then it will create .class file (here, Test.java). We can then

run the program to see the output. Some of the most common compile-time errors are:

• Use of variable without declaration

• Missing brackets in classes and methods

• Missing semicolons

• Incompatible assignment statements etc.

6.2.2. Run-time errors

Sometimes, a program may compile successfully creating .class file but may not execute

properly i.e., they may produce wrong result or may terminate abruptly. These errors may

occur due to wrong logic of the program and many more reasons like

• Dividing an integer by zero

• Converting invalid strings to number

• Trying to store a value into an array of incompatible class or type etc.

Such types of errors are termed as Run-time errors. Let us consider the following example

for the demonstration of run-time error:

//Program 6.2: Error.java (Demonstration of Run-time error and

// Implicitly throwing an exception)

class Error

{

public static void main(String args[])

{

int p, q, r, result;

p = 20;

q = 6;

r = 6;

result = p / (q-r); //(q-r) is equal to zero

System.out.println(“The result is : “ + result);

}

}

When we compile the above program, then it will create the Error.class file as the

compilation is successful. The compiler will not display any error message as there is no

147

syntax error in the code. When we try to run the program then it will display the following

error message and terminate the execution of the program. In the statement Result = p/(q-

r); we are dividing p by zero. When the Java interpreter encounters an error such as dividing

an integer by zero, it creates an exception object and throws it (i.e., informs us that an error

has occurred)

6.3 Exceptions

An exception in Java is an object that is created when an abnormal situation arises in a

program. When an error occurs within a method, the method creates an object and hands it

off to the runtime system. This exception object has data members that store information

about the nature of the problem. Such an object can be instantiated by a running program

in two ways:

• explicitly by a throw statement in the program

• or implicitly by the Java run-time system when it is unable

to execute a statement in a program(as in Program 6.2).

One major benefit of having an error signaled by an exception is that it separates the code

that deals with errors from the code that is executed when things are moving along

smoothly. Another positive aspect of exceptions is that they provide a way of enforcing a

response to particular errors – with many kinds of exceptions, we must include code in our

program to deal with them, otherwise our code will not compile. One important idea to

grasp is that not all errors in our programs need to be signaled by exceptions.

At this point we will discuss the basics of Java’s exception throwing and catching

mechanism. When an error occurs in a Java program it usually results in an exception being

thrown. A method may throw an exception for many reasons, for instance if the input

148

parameters are invalid (negative when expecting positive etc.). How we throw, catch and

handle these exception matters. There are several different ways to do so.

Creating an exception object and handing it to the runtime system is called throwing an

exception. When an exception is thrown, it can be caught by a catch clause of try statement.

If the exception object is not caught and handled properly, the interpreter will display an

error message (e.g., like the output of Program 6.2) and terminate the program. If we want

the program to continue with the execution of the remaining code, then we should try to

catch the exception object thrown by the error condition and display an appropriate

message. This process is known as exception handling.

6.4 Exceptions Hierarchy

The hierarchy of exception classes commence from Throwable class which is the base class

for an entire family of exception classes, declared in java.lang package as

java.lang.Throwable. An exception is always an object of some subclass of the standard

class Throwable. Two direct subclasses of the Throwable class are the Error class and the

Exception class which cover all the standard exceptions. Both these classes themselves

have subclasses which identify specific exception conditions. The following figure 6.1

shows the exception hierarchy which gives some of the standard exception in Java.

149

Fig. 6.1 Exception Hierarchy in Java

6.4.1 Checked versus Unchecked Exceptions

In Java there are basically two types of built-in exceptions: Unchecked exceptions and

checked exceptions. Exception in Java are classified on the basis of the exception handled

by the java compiler.

• Unchecked Exceptions

The kinds of exception that can be prevented by writing better code are unchecked

exceptions. They are instances of the Error class, the RuntimeException class, and their

extensions. These exception arises during run-time ,that occur due to invalid argument

passed to method.

• Checked Exceptions

The checked exceptions are checked by the compiler before the program is run. At compile

time, the Java compiler checks that a program contains handlers for checked exceptions.

150

These exception are the object of the Exception class or any of its subclasses except Run-

timeException class. These condition arises due to invalid input, problem with our network

connectivity and problem in database. The statements that throw them either must be placed

within try statement or they must be declared in their method’s header.

The java.lang package defines several classes and exceptions. Some of these classes are

not checked while some other classes are checked (Table 6.1).

Table 6.1

6.5 Syntax of Exception Handling Code

If we want to deal with the exceptions where they occur, there are three kinds of code block

that we can include in a method to handle them. These are try, catch, and finally. At this

point we will first discuss the detail of try and catch blocks and will come to the application

of a finally block a little later.

151

• The try Block

When we want to catch an exception, the code in the method that might cause the exception

to be thrown must be enclosed in a try block. A try block is simply the keyword try,

followed by braces enclosing the code that can throw the exception:

try

{

// Code that can throw one or more exceptions

}

The try block can have one or more statements that could generate an exception. If any one

statement generates an exception, the remaining statements in the block are skipped and

execution jumps to the catch block that is placed next to the try block. It should be

remebered that every try statement should be followed by at least one catch statement if

there is no finally block.

• The catch Block

We enclose the code to handle an exception of a given type in a catch block. The catch

block must immediately follow the try block that contains the code that may throw that

particular exception. A catch block consists of the keyword catch followed by a parameter

between parentheses that identifies the type of exception that the block is to deal with. This

is followed by the code to handle the exception enclosed between braces:

try

{

// Code that can throw one or more exceptions

}

catch(ArithmeticException e)

{

// Code to handle the exception

}

The above catch block only handles ArithmeticException exceptions. This implies that, this

is the only kind of exception that can be thrown in the try block. If others can be thrown,

this will not compile. Let us modify Program 6.2 for the demonstration of try and catch

blocks to handle an arithmetic expression.

152

//Program 6.3: Demo.java

class Demo

{

public static void main(String args[])

{

int p, q, r, x, y;

p = 20;

q = 5;

r = 5;

try

{

x = p / (q-r); //exception here

}

catch(ArithmeticException e)

{

System.out.println("Testing an exception");

}

y = p / (q+r);

System.out.println("\nThe result is = "+y);

}

}

If we run the above program, the following output will be displayed.

The execution of the program does not stop at the point of exceptional condition. It catches

the error condition, displays the message “Testing an exception”. The execution continues

and gives the result without terminating the program as if nothing has happened.

153

Program 6.3 is an example of implicitly throwing and catching an unchecked exception.

Let us consider the following program for an illustration of unchecked exception that is

thrown by an explicit throw statement.

//Program 6.4: Calculate.java (Explict throw of unchecked exception)

class Calculate

{

static double sqrt(double n)

{

if(n<0)

throw new IllegalArgumentException();

return Math.sqrt(n);

}

public static void main(String[] args)

{

System.out.println(sqrt(-16));

System.out.println("\nEnd of Calculate Method");

}

}

When we run the program after compiling, then it will display the following and terminate

the program.

output is showing what happens when an exception is not caught. It can be prevented with

the help of try and catch statement. The following program is a modification of Program

6.4 to handle such unchecked exception.

154

//Program 6.5: Calculate.java (Catching an unchecked exception

//which is thrown explicitly)

class Calculate

{

static double sqrt(double n)

{

if(n<0)

throw new IllegalArgumentException();

return Math.sqrt(n);

}

public static void main(String[] args)

{

try

{

System.out.println(sqrt(-16));

}

catch(Exception exception)

{

System.out.println("exception: "+ exception);

}

System.out.println("\nThe exception was caught");

System.out.println("\nEnd of Calculate Method");

}

}

The output will be like this:

155

The IllegalArgumentException object is thrown with the statement throw new

IllegalArgumentException(); and that exception is caught with the statement

catch(Exception exception) as it is generated by the statement System.out.println(sqrt(-

16)); within that try block. The exception in the Program 6.5 can be handled by writing

proper program code.

Normally, the try statement should be used only for checked exceptions. That is because

the purpose of try statement is to handle unanticipated errors. Exceptions should be

reserved for the unusual or catastrophic situations that can arise. The reason for this is that

dealing with exceptions involves quite a lot of processing overhead, so if our program is

handling exceptions a lot of the time it will be a lot slower than it needs to be.

Following are the list of various checked exception that defined in the java. lang package.

156

6.6 Multiple Catch Statements

If a try block can throw several different kinds of exception, we can put several catch blocks

after the try block to handle them.

try

{

// Code that may throw exceptions

}

catch(ArithmeticException e)

{

// Code for handling ArithmeticException exceptions

}

catch(IndexOutOfBoundsException e)

{

// Code for handling IndexOutOfBoundsException exceptions

}

// Execution continues here...

Exceptions of type ArithmeticException will be caught by the first catch block, and

exceptions of type IndexOutOfBoundsException will be caught by the second. Of course,

if an ArithmeticException exception is thrown, only the code in that catch block will be

executed.When it is complete, execution continues with the statement following the last

catch block.When we need to catch exceptions of several different types for a try block, the

order of the catch blocks is important. When an exception is thrown, it will be caught by

the first catch block that has a parameter type that is the same as that of the exception, or

a type that is a superclass of the type of the exception.

An extreme case would be if we specify the catch block parameter as type Exception. This

will catch any exception that is of type Exception, or of a class type that is derived from

Exception. This includes virtually all the exceptions we are likely to meet in the normal

course of events.This has implications for multiple catch blocks relating to exception class

types in a hierarchy. The catch blocks must be in sequence with the most derived type first,

and the most basic type last. Otherwise our code will not compile. The simple reason for

this is that if a catch block for a given class type precedes a catch block for a type that is

157

derived from the first, the second catch block can never be executed and the compiler will

detect that this is the case

Suppose we have a catch block for exceptions of type ArithmeticException, and another for

exceptions of type Exception . If we write them in the following sequence, exceptions of

type ArithmeticException could never reach the second catch block as they will always be

caught by the first.

// Invalid catch block sequence – will not compile!

try

{

// try block code

}

catch(Exception e)

{

// Generic handling of exceptions

}

catch(ArithmeticException e)

{

// Specialized handling for these exceptions

}

The above code will not compile.Thus if we have catch blocks for several exception types

in the same class hierarchy, we must put the catch blocks in order, starting with the lowest

subclass first, and then progressing to the highest superclass.In principle, if you are only

interested in generic exceptions, all the error handling code can be localized in one catch

block for exceptions of the superclass type. However, in general it is more useful, and better

practice, to have a catch block for each of the specific types of exceptions that a try block

can throw.

In some cases, more than one exception could be raised by a single piece of code. To handle

this type of situation, you can specify two or more catch clauses, each catching a different

type of exception. When an exception is thrown, each catch statement is inspected in order,

and the first one whose type matches that of the exception is executed. After one catch

statement executes, the others are bypassed, and execution continues after the try / catch

block. The following example traps two different exception types:

158

// Program 6.7 Demonstrate multiple catch statements.

class MultipleCatches {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

This program will cause a division-by-zero exception if it is started with no commandline

arguments, since a will equal zero. It will survive the division if you provide a command-

line argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the

program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultipleCatches

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultipleCatches TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42

After try/catch blocks.

159

When you use multiple catch statements, it is important to remember that exception

subclasses must come before any of their superclasses. This is because a catch statement

that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a

subclass would never be reached if it came after its superclass. Further, in Java, unreachable

code is an error. For example, consider the following program:

/* This program contains an error.

A subclass must come before its superclass in a series of catch statements. If not,

unreachable code will be created and a compile-time error will result.

*/

class SuperSubCatch {

public static void main(String args[]) {

try {

int a = 0;

int b = 42 / a;

} catch(Exception e) {

System.out.println("Generic Exception catch.");

}

/* This catch is never reached because

ArithmeticException is a subclass of Exception. */

catch(ArithmeticException e) { // ERROR – unreachable

System.out.println("This is never reached.");

}

}

}

If you try to compile this program, you will receive an error message stating that the second

catch statement is unreachable because the exception has already been caught. Since

ArithmeticException is a subclass of Exception, the first catch statement will handle all

Exception-based errors, including ArithmeticException. This means that the second

catch statement will never execute. To fix the problem, reverse the order of the catch

statements.

160

6.7 Using finally Statement

The immediate nature of an exception being thrown means that execution of the try block

code breaks off, regardless of the importance of the code that follows the point at which

the exception was thrown. This introduces the possibility that the exception leaves things

in an unsatisfactory state. We might have opened a file, for instance, and because an

exception was thrown, the code to close the file is not executed.

The finally block provides the means to clean up at the end of executing a try block. We

use a finally block when we need to be sure that some particular code is run before a method

returns, no matter what exceptions are thrown within the previous try block. A finally block

is always executed, regardless of what happens during the execution of the method. If a file

needs to be closed, or a critical resource released, we can guarantee that it will be done if

the code to do it is put in a finally block. The finally block has a very simple structure:

finally

{

// Clean-up code to be executed last

}

Just like a catch block, a finally block is associated with a particular try block, and it must

be located immediately following any catch blocks for the try block. If there are no catch

blocks then we position the finally block immediately after the try block. If we do not do

this, our program will not compile. Java provides the finally statement that can be used

handle an exception that is not caught by any of the previous catch statement. i.e., a try

statement does not have to have a catch block if it has a finally block. If the code in the try

statement has multiple exit points and no associated catch clauses, the code in the finally

block is executed no matter how the try block is exited. Thus, it makes sense to provide a

finally block whenever there is code that must always be executed.

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path

that alters the normal flow through the method. Depending upon how the method is coded,

it is even possible for an exception to cause the method to return prematurely. This could

be a problem in some methods. For example, if a method opens a file upon entry and closes

161

it upon exit, then you will not want the code that closes the file to be bypassed by the

exception-handling mechanism. The finally keyword is designed to address this

contingency.

finally creates a block of code that will be executed after a try /catch block has completed

and before the code following the try/catch block. The finally block will execute whether

or not an exception is thrown. If an exception is thrown, the finally block will execute even

if no catch statement matches the exception. Any time a method is about to return to the

caller from inside a try/catch block, via an uncaught exception or an explicit return

statement, the finally clause is also executed just before the method returns. This can be

useful for closing file handles and freeing up any other resources that might have been

allocated at the beginning of a method with the intent of disposing of them before returning.

The finally clause is optional. However, each try statement requires at least one catch or a

finally clause.

Here is an example program that shows three methods that exit in various ways, none

without executing their finally clauses:

// Program 6.8 Demonstrate finally.

class FinallyDemo {

// Throw an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

162

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

In this example, procA() prematurely breaks out of the try by throwing an exception. The

finally clause is executed on the way out. procB()’s try statement is exited via a return

statement. The finally clause is executed before procB() returns. In procC(), the try

statement executes normally, without error. However, the finally block is still executed.

Here is the output generated by the preceding program:

inside procA

procA's finally

Exception caught

inside procB

procB's finally

inside procC

procC's finally

163

6.8 Throwing Our Own Exceptions

As we come across Built-in exception, we create own customized exception as per

requirements of the application. On each application there is a specific constraints. Error-

handling become necessary while developing a constraint application. For example,

suppose in the case of a banking application, a customer whose age is less than 18 need to

open Joint Account. The Exception class and its subclass in Java is not able to meet up the

required constraint in application. For this, we create our own customized exception to over

address these constraints and ensure the integrity in the application. Let us see how to

handle and create user-defined exception. The keywords try, catch and finally are used in

implementing user-defined exceptions. This Exception class inherits all the method from

Throwable class.

In the following program, a class MyException is created which is a subclass of the

Exception class. The MyException class has one constructor,i.e MyException().

//Program 6.9: UserDefinedException.java

import java.lang.Exception;

class MyException extends Exception

{

MyException(String m)

{

super(m);

}

}

class UserDefinedException

{

public static void main(String args[])

{

int a=5, b=5000;

try

{

float c =(float)a/(float)b;

if(c<0.01)

164

{

throw new MyException("\nNumber is too small");

}

}

catch(MyException e)

{

System.out.println("\nCaught my exception");

System.out.println(e.getMessage());

}

finally

{

System.out.println("\nFinally block executed");

}

}

}

The object e which contain the error message “Number is too small” is caught by the catch

block which then displays the message using the getMessage() method. The output will be

like this:

We can also learn how to use the statement finally with the above program. The last line

of the output is produced by the finally block.

165

6.9 Check Your Progress

1. The two categories of errors: Compile-time errors and ……………………….

2. All syntax errors detected and displayed by the Java compiler are termed as

…………………………….

3. Dividing an integer by zero is a type of………………………….

4. Two direct subclasses of the Throwable class are the Error class and

the………………………...

5. The basically two types of built-in exceptions: Unchecked exceptions

and………………………….

6. The kinds of exception that can be prevented by writing better code are

………………………………

7. ………………………………are checked by the compiler before the program is run.

8. When we want to catch an exception, the code in the method that might cause the

exception to be thrown must be enclosed in a ………………block.

9. We enclose the code to handle an exception of a given type in a ……………. block.

10. The …………………. block provides the means to clean up at the end of executing

a try block.

6.10 Summary

We can define an exception as an event, which occurs during the execution of a program

that disrupts the normal flow of the program’s instructions. The Java programming

language uses exceptions to handle errors and other exceptional events. Exceptions are used

in a program to signal that some error or exceptional situation has occurred, and that it does

not make sense to continue the program flow until the exception has been handled.

There are two categories of errors: Compile-time errors and Run-time errors.

All syntax errors detected and displayed by the Java compiler are termed as Compile-time

errors. If the compiler detects an error while compiling a program, then the .class file will

not be created.

Sometimes, a program may compile successfully creating .class file but may not execute

properly i.e., they may produce wrong result or may terminate abruptly. These errors may

occur due to wrong logic of the program and many more reasons like

166

• Dividing an integer by zero

• Converting invalid strings to number

• Trying to store a value into an array of incompatible class or type etc.

An exception in Java is an object that is created when an abnormal situation arises in a

program. When an error occurs within a method, the method creates an object and hands it

off to the runtime system. This exception object has data members that store information

about the nature of the problem. Such an object can be instantiated by a running program

in two ways:

• explicitly by a throw statement in the program

• or implicitly by the Java run-time system when it is unable

The hierarchy of exception classes commence from Throwable class which is the base class

for an entire family of exception classes, declared in java.lang package as

java.lang.Throwable. An exception is always an object of some subclass of the standard

class Throwable.

In Java there are basically two types of built-in exceptions: Unchecked exceptions and

checked exceptions. Exception in Java are classified on the basis of the exception handled

by the java compiler.

When we want to catch an exception, the code in the method that might cause the exception

to be thrown must be enclosed in a try block. The catch block must immediately follow the

try block that contains the code that may throw that particular exception.

The finally block provides the means to clean up at the end of executing a try block. We

use a finally block when we need to be sure that some particular code is run before a method

returns, no matter what exceptions are thrown within the previous try block.

6.11 Keywords

Compile-Time Errors- All syntax errors detected and displayed by the Java compiler are

termed as Compile-time errors.

Run-Time Errors- These errors may occur due to wrong logic of the program and many

more reasons.

167

Exception- An exception in Java is an object that is created when an abnormal situation

arises in a program.

Explicitly- Exception by a throw statement in the program.

Implicitly- Exception by the Java run-time system when it is unable.

Unchecked Exceptions- The kinds of exception that can be prevented by writing better

code are unchecked exceptions.

Checked Exceptions- The checked exceptions are checked by the compiler before the

program is run.

try- When we want to catch an exception, the code in the method that might cause the

exception to be thrown must be enclosed in a try block

catch- We enclose the code to handle an exception of a given type in a catch block.

finally- The finally block provides the means to clean up at the end of executing a try block.

6.12 Self-Assessment Test

Q.1 What do you understand by error in java? Explain the types of error.

Q.2 Explain run-type error with the help of a program.

Q.3 Differentiate between error and exception in java.

Q.4 Explain the hierarchy of exception in java.

Q.5 Differentiate between checked and unchecked exceptions with example.

Q.6 What do you understand by try and catch block? Explain.

Q.7 Explain the concept of multiple catch statements.

Q.8 Explain the concept of finally keyword.

6.13 Answers to check your progress

1. Run-time errors

168

2. Compile-time errors

3. run-time error

4. Exception class

5. checked exceptions

6. unchecked exceptions

7. Checked exceptions

8. try

9. catch

10. finally

6.14 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

169

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 7

File Handling

STRUCTURE

7.0 Learning Objective

7.1 Introduction

7.2 I/O Basics: Streams

7.3 The Stream Classes

7.4 The Predefined Streams

7.5 Reading Console Input

7.6 Writing Console Output

7.7 Reading and Writing Files

7.8 Check Your Progress

7.9 Summary

7.10 Keywords

7.11 Self-Assessment Test

7.12 Answers to check your progress

7.13 References / Suggested Readings

7.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• learn about the most important io package in Java

• learn about the predefined streams

• learn about console input and output

• describe how to read data from file and how to write data to file

170

7.1 INTRODUCTION

In this unit we will learn one of the Java’s most important package io. We will learn about

the streams, different stream classes. Besides this how to read data from input and how to

write data into output. We also give a brief introduction of file handling in Java.

The io package supports Java’s basic I/O (Input/Output) system including file I/O. Java

program perform I/O through streams. A stream is linked to a physical device by the Java

I/O system. Java define 2 types of stream, byte and character. In Java 1.0, the only way to

perform console input was to use a byte stream. The preferred method of reading console

input for Java 2 is use a character-oriented stream, which makes the program easier to

internationalize and maintain.

Java provides a number of classes and methods that allow to read and write files. In Java

all files are byte oriented, and Java provides method to read and write bytes from and to a

file.

7.2 I/O BASICS: STREAMS

Java views each file as a sequential stream of bytes. Each operating system provides a

mechanism to determine the end of a file, such as an end-of-file marker or count of the total

bytes in the file that is recorded in a system maintained administrative data structure.

A Java program processing a stream of bytes simply receives an indication from the

operating system when the program reaches the end of the stream the program does not

need to know how the underlying platform represents files or streams.

The Java Input/Output (I/O) is a part of java.io package. The java.io package contains a

relatively large number of classes that support input and output operations. The classes in

171

the package are primarily abstract classes and stream-oriented that define methods and

subclasses which allow bytes to be read from and written to files or other input and output

sources. The InputStream and OutputStream are central classes in the package which are

used for reading from and writing to byte streams, respectively.

The java.io package can be categorised along with its stream classes in a hierarchy structure

as shown below:

The InputStream class is used for reading the data such as a byte and array of bytes from

an input source. An input source can be a file, a string, or memory that may contain the

data. It is an abstract class that defines the programming interface for all input streams that

are inherited from it. An input stream is automatically opened when we create it. We can

explicitly close a stream with the close() method, or let it be closed implicitly when the

object is found as a garbage.

172

The subclasses inherited from the InputStream class can be seen in a hierarchy manner as

shown below:

InputStream is inherited from the Object class. Each class of the InputStreams provided

by the java.io package is intended for a different purpose.

The OutputStream class is a sibling to InputStream that is used for writing byte and array

of bytes to an output source. Similar to input sources, an output source can be anything

such as a file, a string, or memory containing the data. Like an input stream, an output

stream is automatically opened when you create it. You can explicitly close an output

stream with the close() method, or let it be closed implicitly when the object is garbage

collected.

The classes inherited from the OutputStream class can be seen in a hierarchy structure

shown below:

173

OutputStream is also inherited from the Object class. Each class of the OutputStreams

provided by the java.io package is intended for a different purpose.

How Files and Streams Work:

Java uses streams to handle I/O operations through which the data is flowed from one

location to another. For example, an InputStream can flow the data from a disk file to the

internal memory and an OutputStream can flow the data from the internal memory to a disk

file. The disk-file may be a text file or a binary file. When we work with a text file, we use

a character stream where one character is treated as per byte on disk. When we work with

a binary file, we use a binary stream.

The working process of the I/O streams can be shown in the given diagram.

7.3 THE STREAM CLASSES

There are two types of streams

1. Byte –for Binary I/O

2. Character – for Character I/O

174

Programs use byte streams to perform input and output of 8-bit bytes.

There are many byte stream classes. To demonstrate how byte streams work, we’ll focus

on the file I/O byte streams, FileInputStream and FileOutputStream. Other kinds of byte

streams are used in much the same way, they differ mainly in the way they are constructed.

We’ll explore FileInputStream and FileOutputStream by examining an example program

named CopyBytes.java, which uses byte streams to copy kkhsou.txt, one byte at a time and

write the content of the file on outagain.txt.

Kkhsou.java

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class CopyBytes {

public static void main(String[] args) throws IOException {

FileInputStream in = null;

FileOutputStream out = null;

try {

in = new FileInputStream(“kkhsou.txt”);

out = new FileOutputStream(“outagain.txt”);

int c;

while ((c = in.read()) != -1) {

out.write(c);

}

} finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close();

}

}

}

175

}

We need to create one file kkhsou.txt which contains the test “DISHPUR GUWAHATI”.

The program will copy this text into a new file called outagain.txt.

CopyBytes spends most of its time in a simple loop that reads the input stream and writes

the output stream, one byte at a time, as shown in the following figure.

Fig 7.1: Simple byte stream input and output.

We can notice that read() returns an int value. Using a int as a return type allows read() to

use -1 to indicate that it has reached the end of the stream.

The primary advantage of character streams is that they make it easy to write programs that

are not dependent upon a specific character encoding, and are therefore easy to

internationalize.

176

Java represents strings in Unicode, an International standard character encoding that is

capable of representing most of the world’s written languages. Typical human-readable text

files, however, use encodings that are not necessarily related to Unicode, or even to ASCII,

and there are many such encodings. Character streams hide the complexity of dealing with

these encodings by providing two classes that serve as bridges between byte streams and

character streams. The InputStreamReader class implements a character-input stream that

reads bytes from a byte-input stream and converts them to characters according to a

specified encoding.

Similarly, the OutputStreamWriter class implements a character-output stream that

converts characters into bytes according a specified encoding and writes them to a byte-

output stream.

A second advantage of character streams is that they are potentially much more efficient

than byte streams. The implementations of many of Java’s original byte streams are

oriented around byte-at-a-time read and write operations. The character-stream classes, in

contrast, are oriented around buffer-at-a-time read and write operations. This difference, in

combination with a more efficient locking scheme, allows the character stream classes to

more than make up for the added overhead of encoding conversion in many cases.

7.4 THE PREDEFINED STREAMS

All Java programs automatically import java.lang package. This package defines a class

called System, which encapsulates several aspects of the run-time environment. For

example, using some of its method we can obtain the current time and the settings of various

properties associated within the system. System also contains three predefined system

variables, in, out and err.

System.out refers to the standard output stream, which is console by default. System.in

refers to standard input, which is the keyboard by default. System.err refers to the standard

error stream, which is the console.

177

System.in is an object of type InputStream, System.out and System.err are object of type

PrintStream. These are byte stream.

7.5 READING CONSOLE INPUT

Java also supports three Standard Streams:

• Standard Input: Accessed through System.in which is used to read input from the

keyboard.

• Standard Output: Accessed through System.out which is used to write output to

be display.

• Standard Error: Accessed through System.err which is used to write error output

to be display.

Working with Reader classes:

Java provides the standard I/O facilities for reading text from either the file or the keyboard

on the command line. The Reader class is used for this purpose that is available in the

java.io package. It acts as an abstract class for reading character streams. The only methods

that a subclass must implement are read(char[], int, int) and close(). the Reader class is

further categorized into the subclasses.

The following diagram shows a class-hierarchy of the java.io.Reader

178

This program illustrates you how to use standard input stream to read the user input.

import java.io.*;

public class ReadStandardIO{

public static void main(String[] args) throws IOException{

InputStreamReader inp=new

InputStreamReader(System.in);

BufferedReader br = new BufferedReader(inp);

System.out.println(“Enter text : “);

String str = br.readLine();

System.out.println(“You entered String : “);

System.out.println(str);

}

}

7.6 WRITING CONSOLE OUTPUT

We can write programs that write text lines to the “console”, which is typically a DOS

command window.

ConsoleOutput.java:

public class ConsoleOutput {

public static void main(String[] args) {

179

System.out.println(“Hello, GoodMOrning”);

}

}

No imports are required, The System class is automatically imported (as are all java.lang

classes).

You can write one complete output line to the console by calling the System.out.println()

method. The argument to this method will be printed. println comes from Pascal and is

short for “print line”. There is also a similar print method which writes output to the

console, but doesn’t start a new line after the output.

7.7 READING AND WRITING FILES

Java provides a number of classes and methods that allow us to read and write files. In Java

all files are byte oriented, and Java provides methods to read and write bytes from and to a

file.

The File class deals with the machine dependent files in a machine independent manner

i.e., it is easier to write platform-independent code that examines and manipulates files

using the File class. This class is available in the java.lang package.

The java.io.File is the central class that works with files and directories. The instance of

this class represents the name of a file or directory on the host file system.

180

When a File object is created, the system does not check to the existence of a corresponding

file/directory. If the file exist, a program can examine its attributes and perform various

operations on the file, such as renaming it, deleting it, reading from or writing to it.

Lets understand some I/O streams that are used to perform reading and writing operation

in a file.

Java supports the following I/O file streams.

• FileInputStream

• FileOutputStream

• FileInputstream

This class is a subclass of Inputstream class that reads bytes from a specified file name .

The read() method of this class reads a byte or array of bytes from the file. It returns -1

when the end-of-file has been reached. We typically use this class in conjunction with a

BufferedInputStream and DataInputstream class to read binary data. To read text data, this

class is used with an InputStreamReader and BufferedReader class. This class throws

FileNotFoundException, if the specified file is not exist. We can use the constructor of this

stream as:

FileInputstream(File filename);

FileOutputStream:

This class is a subclass of OutputStream that writes data to a specified file name. The write()

method of this class writes a byte or array of bytes to the file. We typically use this class in

conjunction with a BufferedOutputStream and a DataOutputStream class to write binary

data. To write text, we typically use it with a PrintWriter, BufferedWriter and an

OutputStreamWriter class. You can use the constructor of this stream as:

FileOutputstream(File filename);

181

DataInputStream:

This class is a type of FilterInputStream that allows you to read binary data of Java primitive

data types in a portable way. In other words, the DataInputStream class is used to read

binary Java primitive data types in a machine-independent way. An application uses a

DataOutputStream to write data that can later be read by a DataInputStream. You can use

the constructor of this stream as:

DataInputStream(FileOutputstream finp);

The following program demonstrate, how the contains are read from a file.

import java.io.*;

public class ReadFile{

public static void main(String[] args) throws IOException{

File f;

f=new File(“demo.txt”);

if(!f.exists()&& f.length()<0)

System.out.println(“The specified file is not exist”);

else{

FileInputStream finp=new FileInputStream(f);

byte b;

do{

b=(byte)finp.read();

System.out.print((char)b);

}

while(b!=-1);

finp.close();

}

}

}

182

In the section, we will learn how to write data to a file. As we have discussed, the

FileOutputStream class is used to write data to a file.

Let us consider an example that writes the data to a file converting into the bytes.This

program first check the existence of the specified file. If the file exist, the data is written to

the file through the object of the FileOutputStream class.

import java.io.*;

public class WriteFile{

public static void main(String[] args) throws IOException{

File f=new File(“textfile1.txt”);

FileOutputStream fop=new FileOutputStream(f);

if(f.exists()){

String str=”This data is written through the program”;

fop.write(str.getBytes());

fop.flush();

fop.close();

System.out.println(“The data has been written”);

}

else

System.out.println(“This file is not exist”);

183

}

}

7.8 Check Your Progress

1. The Java Input/Output (I/O) is a part of …………………………. package.

2. ………………………………………….is inherited from the Object class.

3. ………………………an International standard character encoding that is capable of

representing most of the world’s written languages.

4. System also contains three predefined system variables……………………………..

5. The …………………………is the central class that works with files and directories.

6. ……………………..Accessed through System.in which is used to read input from

the keyboard

7. ……………………...Accessed through System.out which is used to write output to

be display.

8. ……………………...Accessed through System.err which is used to write error

output to be display.

9. ………………………is an object of type InputStream, System.out and System.err

are object of type PrintStream.

10. Programs use ……………………streams to perform input and output of 8-bit bytes.

184

7.9 Summary

The Java Input/Output (I/O) is a part of java.io package. The java.io package contains a

relatively large number of classes that support input and output operations. The classes in

the package are primarily abstract classes and stream-oriented that define methods and

subclasses which allow bytes to be read from and written to files or other input and output

sources.

The InputStream and OutputStream are central classes in the package which are used for

reading from and writing to byte streams, respectively.

InputStream is inherited from the Object class. Each class of the InputStreams provided by

the java.io package is intended for a different purpose.The OutputStream class is a sibling

to InputStream that is used for writing byte and array of bytes to an output source. Similar

to input sources, an output source can be anything such as a file, a string, or memory

containing the data.

There are many byte stream classes. To demonstrate how byte streams work, we’ll focus

on the file I/O byte streams, FileInputStream and FileOutputStream. Other kinds of byte

streams are used in much the same way, they differ mainly in the way they are constructed.

All Java programs automatically import java.lang package. This package defines a class

called System, which encapsulates several aspects of the run-time environment.

Java supports the following I/O file streams.

• FileInputStream

• FileOutputStream

• FileInputstream

The File class deals with the machine dependent files in a machine independent manner

i.e., it is easier to write platform-independent code that examines and manipulates files

using the File class. This class is available in the java.lang package.

185

The java.io.File is the central class that works with files and directories. The instance of

this class represents the name of a file or directory on the host file system.

7.10 Keywords

InputStream- The InputStream class is used for reading the data such as a byte and array

of bytes from an input source.

OutputStream- The OutputStream class is a sibling to InputStream that is used for writing

byte and array of bytes to an output source.

Byte Stream – for Binary I/O

Character Stream – for Character I/O

Unicode- Java represents strings in Unicode, an International standard character encoding

that is capable of representing most of the world’s written languages.

InputStreamReader- The InputStreamReader class implements a character-input stream

that reads bytes from a byte-input stream and converts them to characters according to a

specified encoding.

OutputStreamWriter- OutputStreamWriter class implements a character-output stream

that converts characters into bytes according a specified encoding and writes them to a

byte-output stream.

System.out - refers to the standard output stream.

System.err - refers to the standard error stream, which is the console.

System.in - refers to standard input.

186

Console- for writing programs that write text lines to the “console”, which is typically a

DOS command window.

File- The File class deals with the machine dependent files in a machine independent

manner.

7.11 Self-Assessment Test

Q.1 What is stream in java? How Java represents a file?

Q.2 How file and stream work in Java?

Q.3 What are the two different types of streams? What are the advantages of character

streams?

Q.4 What is predefined stream?

Q.5 Explain Console Output with proper program.

Q.6 Discuss the hierarchy of reading console input.

Q.7 How will you read and write file in Java? Explain.

7.12 Answers to check your progress

1. java.io

2. InputStream

3. Unicode

4. in, out and err

5. java.io.File

6. Standard Input

7. Standard Output

8. Standard Error

9. System.in

10. Byte

187

7.13 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

188

SUBJECT: JAVA PROGRAMMING

COURSE CODE: MCA-13

AUTHOR: AYUSH SHARMA

LESSON NO. 8

GUI Programming

STRUCTURE

8.0 Learning Objective

8.1 Introduction

8.2 AWT Basics

8.3 AWT Components

8.4 Event Handling

8.5 Introduction to Swing

8.6 Swing Components

8.7 Event Handling

8.8 Display Text and Image in a Window

8.9 Layout Manager

8.10 Check Your Progress

8.11 Summary

8.12 Keywords

8.13 Self-Assessment Test

8.14 Answers to check your progress

8.15 References / Suggested Readings

8.0 LEARNING OBJECTIVE

After going through this unit, you will be able to:

• learn about the concept of AWT and its components

• describe event handling

189

• learn about Swing and its components

• display test and images in a window

• learn about layout manager

8.1 INTRODUCTION

In this unit we will learn about the AWT package of the Java and a brief description of

Swing. The AWT is Java’s original platform-independent windowing, graphics, and user-

interface widget toolkit. The AWT is now part of the Java Foundation Classes (JFC) —

the standard API for providing a graphical user interface (GUI) for a Java program. Here

we will provide a brief description about different AWT components, event handling in

AWT and Swing. At the end we will learn about Layout Manager.

8.2 AWT Basics

AWT stands for Abstract Windowing Toolkit. It contains all classes to write the program

that interface between the user and different windowing toolkits. We can use the AWT

package to develop user interface objects like buttons, checkboxes, radio buttons and

menus etc.

Now a days developer are using Swing components instead of AWT to develop good GUI

for windows applications.

8.3 AWT Components

In this section we will learn about the different components available in the Java AWT

package for developing user interface for our program. Following are some of the

components of Java AWT:

Labels: This is the simplest component of Java Abstract Window Toolkit. This component

is generally used to show the text or string in our application and label never perform any

type of action. Syntax for defining the label is:

190

Label label_name = new Label (“This is the label text”);

Above code simply represents the text for the label.

Label label_name = new Label (“This is the label text.”, Label.CENTER);

label can be left, right or centered. Above declaration used the center justification of the

label using the Label.CENTER

Buttons: This is the component of Java Abstract Window Toolkit and is used to trigger

actions and other events required for our application. The syntax of defining the button is

as follows:

Button button_name = new Button (“This is the label of the button.”);

We can change the Button’s label or get the label’s text by using the

Button.setLabel(String) and Button.getLabel() method. Buttons are added to its container

using the add (button_name) method.

Check Boxes: This component of Java AWT allows us to create check boxes in our

applications. The syntax of the definition of Checkbox is as follows:

CheckBox checkbox_name = new Checkbox (“Optional check box 1”, false);

Above code constructs the unchecked Checkbox by passing the Boolean valued argument

false with the Checkbox label through the Checkbox() constructor. Defined Checkbox is

added to its container using add (checkbox_name) method. We can change and get the

checkbox’s label using the setLabel (String) and getLabel() method. We can also set and

get the state of the checkbox using the setState(boolean) and getState() method provided

by the Checkbox class.

Radio Button: This is the special case of the Checkbox component of Java AWT package.

This is used as a group of checkboxes which group name is same. Only one Checkbox from

a Checkbox Group can be selected at a time. Syntax for creating radio buttons is as follows:

CheckboxGroup chkgp = new CheckboxGroup();

add (new Checkbox (“One”, chkgp, false);

add (new Checkbox (“Two”, chkgp, false);

191

add (new Checkbox (“Three”,chkgp, false);

In the above code we are making three check boxes with the label “One”, “Two” and

“Three”. If we mention more than one true valued for checkboxes then our program takes

the last true and show the last check box as checked.

Text Area: This is the text container component of Java AWT package. The Text Area

contains plain text. TextArea can be declared as follows:

TextArea txtArea_name = new TextArea();

We can make the Text Area editable or not using the setEditable (Boolean) method. If we

pass the Boolean valued argument false then the text area will be non-editable otherwise it

will be editable. The text area is by default in editable mode. Text are set in the text area

using the setText(string) method of the TextArea class.

Text Field: This is also the text container component of Java AWT package. This

component contains single line and limited text information. This is declared as follows:

TextField txtfield = new TextField(20);

We can fix the number of columns in the text field by specifying the number in the

constructor. In the above code we have fixed the number of columns to 20.

As shown in the example below, a button is represented by a single label. That is the label

shown in the example can be pushed with a click of a

mouse.

MyButton.java

import java.awt.*;

import java.applet.Applet;

public class MyButton extends Applet

{

public void init()

{

Button button = new Button(“SUBMIT”);

add(button);

}

}

192

Here is the HTML code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<APPLET ALIGN=”CENTER” CODE=”MyButton” WIDTH=”400"

HEIGHT=”200"></APPLET>

</BODY>

</HTML>

193

8.4 Event Handling

There are many types of events that are generated by our AWT Application. These events

are used to make the application more effective and efficient. Generally, there are twelve

types of event are used in Java AWT. These are as follows:

1. ActionEvent : It indicates the component-defined events occurred i.e. the event

generated by the component like Button, Checkboxes etc.

2. AdjustmentEvent : This is the AdjustmentEvent class extends from the AWTEvent

class. When the Adjustable Value is changed then the event is generated.

3. ComponentEvent : This is the low-level event which indicates, if the object moved,

changed and its states (visibility of the object). This class only performs the notification

about the state of the object.

4. ContainerEvent : This is a low-level event which is generated when container’s contents

changes because of addition or removal of a components.

5. FocusEvent : This indicates about the focus where the focus has gained or lost by the

object

194

6. InputEvent : This event class handles all the component-level input events. This class

acts as a root class for all component-level input events.

7. ItemEvent : The ItemEvent class handles all the indication about the selection of the

object i.e., whether selected or not.

8. KeyEvent : It handles all the indication related to the key operation in the application if

we press any key for any purposes of the object then the generated event gives the

information about the pressed key. These types of events check whether the pressed key

left key or right key, ‘A’ or ‘a’ etc.

9. MouseEvent : It handle all events generated during the mouse operation for the object.

That contains the information whether mouse is clicked or not if clicked then checks the

pressed key is left or right.

10. PaintEvent : The PaintEvent class only ensures that the paint() or update() are

serialized along with the other events delivered from the event queue.

11. TextEvent : TextEvent is generated when the text of the object is changed.

12. WindowEvent : If the window or the frame of our application is changed (Opened,

closed, activated, deactivated or any other events are generated), WindowEvent is

generated.

8.5 Introduction to Swing

The Java Swing provides the multiple platform independent APIs interfaces for interacting

between the users and GUIs components. Java provides an interactive feature for design

the GUIs toolkit or components like: labels, buttons, text boxes, checkboxes, combo boxes,

panels and sliders etc. All AWT flexible components can be handled by the Java Swing.

The Java Swing supports the plugging between the look and feel features. The look and

feel that means the dramatically changing in the component like JFrame, JWindow, JDialog

etc. for viewing it into the several types of window.

195

8.6 Swing Components

There are many components which are used for the building of GUI in Swing. The Swing

Toolkit consists of many components for the building of GUI. These components are also

helpful in providing interactivity to Java applications. Following are the some of the

components which are included in Swing toolkit:

1. list controls

2. buttons

3. labels

4. tree controls

5. table controls

All AWT flexible components can be handled by the Java Swing. Swing toolkit contains

far more components than the simple component toolkit. In the next section we are going

to show some examples.

Text Field: The following example shows how to create a text field. The swing text field

is encapsulated by the JTextComponent class which extends JComponent. One of its

subclass JTextField allows to edit one line of text box.

JTextFields.java:

import java.awt.*;

import javax.swing.*;

public class JTextFields extends JApplet

{

JTextField jtf;

public void init()

{

//Get content pane

Container contentPane=getContentPane();

contentPane.setLayout(new FlowLayout());

//Add Text field

jtf= new JTextField(25);

196

//add Textbox to the content pane

contentPane.add(jtf);

}

}

JTextField.html

<html>

<applet code=”JTextFields.class” height=200 width=320>

</applet>

</html>

Output:

Buttons:

Swing buttons are subclasses of the AbstructButton class, which extends JComponent. The

JButton class provides the functionality of a push button. The following example shows a

push button.

JButtonDemo.java:

import java.awt.*;

import javax.swing.*;

public class JButtonDemo extends JApplet{

197

public void init(){

//Get content pane

Container contentPane=getContentPane();

contentPane.setLayout(new FlowLayout());

//Add button to the content pane

JButton jb=new JButton(“kkhsou”);

contentPane.add(jb);

}

}

JButton.html:

<html>

<applet code=”JButtonDemo.class” height=200 width=320>

</applet>

</html>

Output:

Check Boxes: The JCheckBox class, which provides the functionality of a check box, is a

concrete implementation of AbstractButton. The following example shows how to create

an applet that displays three check boxes.

198

JCheckBoxDemo.java

import java.awt.*;

import javax.swing.*;

public class JCheckBoxDemo extends JApplet

{

public void init()

{

//Get content pane

Container contentPane=getContentPane();

contentPane.setLayout(new FlowLayout());

//Add checkbox to the content pane

JCheckBox cb=new JCheckBox(“C”);

contentPane.add(cb);

cb=new JCheckBox(“C++”);

contentPane.add(cb);

cb=new JCheckBox(“JAVA”);

contentPane.add(cb);

}

}

JCheckBox.html:

<html>

<applet code=”JCheckBoxDemo.class” height=200 width=320>

</applet>

</html>

199

Output:

8.7 Event Handling

Events are an important part in any GUI program. All GUI applications are event-driven.

An application reacts to different event types which are generated during its life. Events are

generated mainly by the user of an application. But they can be generated by other means

as well. e.g., internet connection, window manager, timer. In the event model, there are

three participants:

• event source

• event object

• event listener

The Event source is the object whose state changes. It generates Events. The Event object

(Event) encapsulates the state changes in the event source. The Event listener is the object

that wants to be notified. Event source object delegates the task of handling an event to the

event listener. Event handling in Java Swing toolkit is very powerful and flexible. Java uses

Event Delegation Model. We can specify the objects that are to be notified when a specific

event occurs.

200

Event object: When something happens in the application, an event object is created. For

example, when we click on the button or select an item from list. There are several types

of events. An ActionEvent, TextEvent, FocusEvent, ComponentEvent etc. Each of them is

created under specific conditions. Event object has information about an event, that has

happened.

8.8 Display Text and Image in a Window

The following example shows how to create and display a label consisting of both text and

image. The applet started by getting ist content pane. Then an ImageIcon object created for

the file kkhsou_logo.jpg. On the JLabel constructor first argument is text, seconf argument

is ImageIcon object and the third argument is alignment. The align argument is LEFT,

RIGHT, CENTER, LEADING or TRAILING. Finally the label is added to the content

pane.

JLabelDemo.java

import java.awt.*;

import javax.swing.*;

public class JLabelDemo extends JApplet{

public void init(){

//Get content pane

Container contentPane=getContentPane();

//create icon

ImageIcon ii=new ImageIcon(“kkhsou_logo.jpg”);

//create label

JLabel jl=new JLabel(“KKH Open University”, ii, JLabel.CENTER);

//add label to the content pane

contentPane.add(jl);

}

}

201

JLabelDemo.html

<html>

<applet code=”JLabelDemo.class” height=200 width=320>

</applet>

</html>

Output

8.9 Layout Manager

To create layouts, we use layout managers. Layout managers are one of the most difficult

parts of modern GUI programming. We can use no layout manager, if we want. There might

be situations, where we might not need a layout manager. But to create truly portable,

complex applications, we need layout managers. Without layout manager, we position

components using absolute values.

There are some of the common tasks associated to use layout managers:

• Setting Layout Manager

• Adding Components to a Container

• Providing Size and Alignment Hints

• Putting Space Between Components

• Setting the Container’s Orientation

202

• Tips on Choosing a Layout Manager

• Third-Party Layout Managers

In Java a layout manager class implements the Layout Manager interface. It is used to

determine the position and size of the components within a container. Components can

provide size and alignment hints, still the container’s layout manager has the final authority

on the size and position of the components within the container.

FlowLayout manager : This is the simplest layout manager in the Java Swing toolkit. It

is mainly used in combination with other layout managers. When calculating its children

size, a flow layout lets each component assume its natural (preferred) size.

The manager puts components into a row. In the order, they were added. If they do not fit

into one row, they go into the next one. The components can be added from the right to the

left or vice versa. The manager allows aligning the components.

GridLayout: The GridLayout layout manager lays out components in a rectangular grid.

The container is divided into equally sized rectangles. One component is placed in each

rectangle.

BorderLayout: A BorderLayout manager is a very handy layout manager. It divides the

space into five regions. North, West, South, East and Centre. Each region can have only

one component. If we need to put more components into a region, we can simply put a

panel there with a manager of our choice. The components in N, W, S, E regions get their

preferred size. The component in the centre takes up the whole space left.

BoxLayout: BoxLayout is a powerful manager that can be used to create sophisticated

layouts. This layout manager puts components into a row or into a column. It enables

nesting, a powerful feature, which makes this manager very flexible. It means that we can

put a box layout into another box layout.

8.10 Check Your Progress

1.is generally used to show the text or string in your application.

203

2. never perform any type of action.

3. component of Java AWT allows you to create check boxes in

your applications.

4. is the special case of the Checkbox component of Java AWT

package.

5. and .. is the text container component.

6. the event generated by the component like Button,

Checkboxes etc.

7. is the low-level event which indicates, if the object moved,

changed and it’s states.

8. handle all events generated during the mouse operation for the object.

9. Events are an important part in any .. program.

10. The .. layout manager lays out components in a rectangular

grid.

11. can be used to create sophisticated layouts.

12. A layout manager class implements theinterface.

8.11 Summary

The AWT is Java’s original platform-independent windowing, graphics, and user-interface

widget toolkit. The AWT is now part of the Java Foundation Classes (JFC) — the standard

API for providing a graphical user interface (GUI) for a Java program.

AWT stands for Abstract Windowing Toolkit. It contains all classes to write the program

that interface between the user and different windowing toolkits.

Some of the components of Java AWT: Labels, Buttons, Check Boxes, Radio Button, Text

Area, Text Field.

There are twelve types of event are used in Java AWT. These are as follows: ActionEvent,

AdjustmentEvent, ComponentEvent, ContainerEvent, FocusEvent, InputEvent, ItemEvent,

KeyEvent, MouseEvent, PaintEvent, TextEvent, WindowEvent.

The Java Swing provides the multiple platform independent APIs interfaces for interacting

between the users and GUIs components. Java provides an interactive feature for design

204

the GUIs toolkit or components like: labels, buttons, text boxes, checkboxes, combo boxes,

panels and sliders etc.

Following are the some of the components which are included in Swing toolkit: list

controls, buttons, labels, tree controls, table controls.

In the event model, there are three participants: event source, event object, event listener.

There are some of the common tasks associated to use layout managers:

• Setting Layout Manager

• Adding Components to a Container

• Providing Size and Alignment Hints

• Putting Space Between Components

• Setting the Container’s Orientation

• Tips on Choosing a Layout Manager

• Third-Party Layout Managers.

8.12 Keywords

AWT - stands for Abstract Windowing Toolkit.

Text Area - This is the text container component of Java AWT package.

ActionEvent - It indicates the component-defined events occurred.

AdjustmentEvent - This is the AdjustmentEvent class extends from the AWTEvent class.

ComponentEvent - This is the low-level event which indicates, if the object moved.

ContainerEvent - This is a low-level event which is generated when container’s contents

changes because of addition or removal of a components.

FocusEvent - This indicates about the focus where the focus has gained or lost by the

object.

Swing - The Java Swing provides the multiple platform independent APIs interfaces for

interacting between the users and GUIs components.

205

JTextComponent - The swing text field is encapsulated by the JTextComponent class

which extends JComponent.

FlowLayout manager - This is the simplest layout manager in the Java Swing toolkit.

GridLayout - The GridLayout layout manager lays out components in a rectangular grid.

8.13 Self-Assessment Test

Q.1 What is AWT? List 5 AWT components.

Q.2 Briefly discuss about three Layout manager.

Q.3 What are the two different types of event used in Java AWT?

Q.4 Describe some components of Java AWT.

Q.5 What do you mean by event handling? What are the types of events used in Java

AWT?

8.14 Answers to check your progress

1. Label

2. label

3. check boxes

4. radio button

5. text area, text field

6. ActionEvent

7. Component Event

8. MouseEvent

9. GUI

10. GridLayout

11. BoxLayout

12. LayoutManager

206

8.15 References / Suggested Readings

1. Programming with Java- A Primer by E Balagurusamy, Tata McGrawHill.

2. Java- The Complete Reference by Herbert Schildt, ORACLE.

3. Java For Beginners by Scott Sanderson

4. Head First Java by Kathy Sierra & Bert Bates

5. Java: A Beginner’s Guide, Eighth Edition by Herbert Schildt.

6. A Programmer’s Guide to Java Certification, Mughal K. A., Rasmussen R. W., Addison –

Wesley.

